Learn R Programming

countDM (version 0.1.0)

Bell: MLE of the Bell distribtion

Description

Evaluates the maximum likelihood estimate of the Bell distribtion. The PMF of the Bell distribution is as follows: $$ f(X=x\mid\theta)=\frac{\theta^{x}e^{e^{\theta}+1}B_{x}}{x!};\qquad x=0,1,2,\,\dots, $$ where \(\theta>0\) denotes the Bell parameter and \(B_{x}\) is the Bell number and it is given by $$B_{n}=\frac{1}{e}\sum_{k=0}^{\infty}\frac{k^{n}}{k!}.$$ The Bell number \(B_{n}\) in the above equation is the nth moment of the Poisson distribution with parameter equal to 1.

Usage

bell_mle (x)
mle.bell (x, theta)

Value

bell_mle gives the maximum liklihood estimate of parameter theta. loglik gives value of the maximised log-likelihood. The mle.bell gives the maximum liklihood estimate with standard error and AIC,

Arguments

x

A vector of (non-negative integer) discrete values.

theta

A vector of (non-negative integer) values.

Author

Muhammad Imran and M.H. Tahir.

R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com and M.H. Tahir <mht@iub.edu.pk>.

Details

The function allows to estimate the unknown parameter of the Bell distribution with loglik value using a Newton-Raphson algorithm.

References

Castellares, F., Ferrari, S. L., & Lemonte, A. J. (2018). On the Bell distribution and its associated regression model for count data. Applied Mathematical Modelling, 56, 172-185.

See Also

mle_borel, mle_poisson

Examples

Run this code
x <- data_sbirth
bell_mle (x)
mle.bell (x, 1.2)

Run the code above in your browser using DataLab