Learn R Programming

countDM (version 0.1.0)

Borel: MLE of the Borel distribution

Description

Evaluates the MLE of the Borel distribution. It is defined by the following PMF: $$ f(X=x\mid \alpha)=\frac{\left(\alpha x\right)^{x-1}e^{-\alpha x}}{x!};\qquad x=1,2,\dots, $$ where the parameter \(\alpha\in(0,1)\).

Usage

mle_borel (x, alpha)

Value

mle_borel gives the MLE along with standard error of the estimate and model selction measure AIC.

Arguments

x

A vector of (non-negative integer) discrete values.

alpha

A vector of (non-negative integer) values, \(\alpha\in(0,1)\).

Author

Muhammad Imran and M.H. Tahir.

R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com and M.H. Tahir <mht@iub.edu.pk>.

Details

The function allows to estimate the unknown parameter of the Borel distribution with standard error of the estimate and model selection measure, the Akaike information criterion (AIC).

References

Tanner, J. C. (1961). A derivation of the Borel distribution. Biometrika, 48(1/2), 222-224.

See Also

mle.bell, mle_poisson

Examples

Run this code
x <- c(rep(1,48), rep(2,20), rep(3,7), rep(4,5),rep(5,2),rep(6,6))
mle_borel (x, 0.8)

Run the code above in your browser using DataLab