cGWAS
but
estimates the variance-covariance matrix of the phenotype vector in advance
using clmm
. This method was termed EMMAX (Kang et al., 2010).cGWAS.emmax(y,M,A=NULL,X=NULL,dom=FALSE,verbose=TRUE,scale_a = 0, df_a = -2,
scale_e = 0, df_e = -2,niter=15000,burnin=7500,seed=NULL)
A
will be constructed using M
and cgrm
M
follows {-1,0,1}
The dominance coefficient is computed as: 1-abs(M)
clmm
clmm
clmm
dom=TRUE
every element of the list will be a matrix with two columns. First column additive, second dominance:
beta
clmm
clmm
Kang, H. M., N. A. Zaitlen, C. M. Wade, A. Kirby, D. Heckerman, M. J. Daly, and E. Eskin. "Efficient Control of Population Structure in Model Organism Association Mapping." Genetics 178, no. 3 (February 1, 2008): 1709-23. doi:10.1534/genetics.107.080101.
Kang, Hyun Min, Jae Hoon Sul, Susan K Service, Noah A Zaitlen, Sit-yee Kong, Nelson B Freimer, Chiara Sabatti, and Eleazar Eskin. "Variance Component Model to Account for Sample Structure in Genome-Wide Association Studies." Nature Genetics 42, no. 4 (April 2010): 348-54. doi:10.1038/ng.548.
cGWAS
## Not run:
# # generate random data
# rand_data(500,5000)
#
# # run EMMAX
# res <- cGWAS.emmax(y,M,verbose=TRUE)
# ## End(Not run)
Run the code above in your browser using DataLab