cGWAS but
estimates the variance-covariance matrix of the phenotype vector in advance
using clmm. This method was termed EMMAX (Kang et al., 2010).cGWAS.emmax(y,M,A=NULL,X=NULL,dom=FALSE,verbose=TRUE,scale_a = 0, df_a = -2,
scale_e = 0, df_e = -2,niter=15000,burnin=7500,seed=NULL)A will be constructed using M and cgrmM follows {-1,0,1}
The dominance coefficient is computed as: 1-abs(M)clmmclmmclmmdom=TRUE every element of the list will be a matrix with two columns. First column additive, second dominance:
betaclmmclmmKang, H. M., N. A. Zaitlen, C. M. Wade, A. Kirby, D. Heckerman, M. J. Daly, and E. Eskin. "Efficient Control of Population Structure in Model Organism Association Mapping." Genetics 178, no. 3 (February 1, 2008): 1709-23. doi:10.1534/genetics.107.080101.
Kang, Hyun Min, Jae Hoon Sul, Susan K Service, Noah A Zaitlen, Sit-yee Kong, Nelson B Freimer, Chiara Sabatti, and Eleazar Eskin. "Variance Component Model to Account for Sample Structure in Genome-Wide Association Studies." Nature Genetics 42, no. 4 (April 2010): 348-54. doi:10.1038/ng.548.
cGWAS## Not run:
# # generate random data
# rand_data(500,5000)
#
# # run EMMAX
# res <- cGWAS.emmax(y,M,verbose=TRUE)
# ## End(Not run)
Run the code above in your browser using DataLab