# example dataset
id <- 1:6
sire <- c(rep(NA,3),rep(1,3))
dam <- c(rep(NA,3),2,2,3)
# phenotypes
y <- c(NA, 0.45, 0.87, 1.26, 1.03, 0.67)
dat <- data.frame(id=id,sire=sire,dam=dam,y=y)
# Marker genotypes
M <- rbind(c(1,2,1,1,0,0,1,2,1,0),
c(2,1,1,1,2,0,1,1,1,1),
c(0,1,0,0,2,1,2,1,1,1))
M.id <- 1:3
model_terms <- cSSBR.setup(dat,M, M.id)
var_y <- var(y,na.rm=TRUE)
var_e <- (10*var_y / 21)
var_a <- var_e
var_m <- var_e / 10
# put emphasis on the prior
df = 500
par_random=list(list(method="ridge",scale=var_m,df = df),list(method="ridge",scale=var_a,df=df))
set_num_threads(1)
# passing model terms to 'clmm'
mod<-clmm(y=model_terms$y,
Z=list(model_terms$Marker_Matrix,model_terms$Z_residual),
ginverse = list(NULL, model_terms$ginverse_residual),
par_random=par_random,
scale_e = var_e,
df_e=df,
niter=50000,
burnin=30000)
# check marker effects
print(round(mod[[4]]$posterior$estimates_mean,digits=2))
Run the code above in your browser using DataLab