Based on a coefficient-matrix (i.e. marker matrix) $\mathbf{X}$ that will be scaled column-wise, a weight-vector $\mathbf{w}$ and a shrinkage parameter $\lambda$, cgrm returns
the following similarity matrix:
$$\mathbf{G} = (1-\lambda) \frac{\mathbf{X D X}^{'}}{\sum\mathbf{w}} + \mathbf{I}\lambda$$
where $\mathbf{D}$ = $diag(\mathbf{w})$.
A weighted genomic relationship matrix allows running TA-BLUP as described in Zhang et al. (2010).
Usage
cgrm(X, w = NULL, lambda=0)
Arguments
X
coefficient matrix
w
numeric vector of weights for every column in X
lambda
numeric scalar, shrinkage parameter
Value
Similarity matrix with dimension nrow(X)
Details
...
References
de los Campos, G., Vazquez, A.I., Fernando, R., Klimentidis, Y.C., Sorensen, D., 2013. "Prediction of Complex Human Traits Using the Genomic Best Linear Unbiased Predictor". PLoS Genetics 9, e1003608. doi:10.1371/journal.pgen.1003608
Zhang Z, Liu J, Ding X, Bijma P, de Koning D-J, et al. (2010) "Best Linear Unbiased Prediction of Genomic Breeding Values Using a Trait-Specific Marker-Derived Relationship Matrix". PLoS ONE 5(9): e12648. doi:10.1371/journal.pone.0012648