Based on a marker matrix $\mathbf{X}$ with {-1,0,1} - out of which a column-wise centered dominance coefficient matrix will be constructed and a shrinkage parameter $\lambda$, cgrm.D returns
the following dominance genomic relationship matrix according to Su et al. (2012):
$$\mathbf{G} = (1-\lambda) \frac{\mathbf{X X}^{'}}{\sum\limits_{i=1}^n 2 p_i q_i(1-2 p_i q_i) } + \mathbf{I}\lambda$$
The additive marker coefficients will be used to compute dominance coefficients as: 1-abs(X)
Usage
cgrm.D(X, lambda=0)
Arguments
X
marker matrix
lambda
numeric scalar, shrinkage parameter
Value
Dominance relationship matrix with dimension nrow(X)
Details
...
References
Su G, Christensen OF, Ostersen T, Henryon M, Lund MS (2012) "Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers". PLoS ONE 7(9): e45293. doi:10.1371/journal.pone.0045293