You can use the plot_vars
to produce plots that characterize the frequency or the distribution of your data.
get_plots
can loop through plots for all specified independent variables.
get_plots(
dat_train,
dat_test = NULL,
x_list = NULL,
target = NULL,
ex_cols = NULL,
breaks_list = NULL,
pos_flag = NULL,
equal_bins = FALSE,
cut_bin = "equal_depth",
best = TRUE,
g = 20,
tree_control = NULL,
bins_control = NULL,
fill_colors = love_color(type = "lightnihon_6x1"),
plot_show = TRUE,
save_data = FALSE,
file_name = NULL,
parallel = FALSE,
g_width = 8,
dir_path = tempdir()
)plot_vars(
dat_train,
x,
target,
dat_test = NULL,
g_width = 8,
breaks_list = NULL,
breaks = NULL,
pos_flag = list("1", 1, "bad", "positive"),
equal_bins = TRUE,
cut_bin = "equal_depth",
best = FALSE,
g = 10,
tree_control = NULL,
bins_control = NULL,
fill_colors = love_color(type = "lightnihon_6x1"),
plot_show = TRUE,
save_data = FALSE,
dir_path = tempdir()
)
A data.frame with independent variables and target variable.
A data.frame of test data. Default is NULL.
Names of independent variables.
The name of target variable.
A list of excluded variables. Regular expressions can also be used to match variable names. Default is NULL.
A table containing a list of splitting points for each independent variable. Default is NULL.
Value of positive class, Default is "1".
Logical, generates initial breaks for equal frequency or width binning.
A string, if equal_bins is TRUE, 'equal_depth' or 'equal_width', default is 'equal_depth'.
Logical, merge initial breaks to get optimal breaks for binning.
Number of initial breakpoints for equal frequency binning.
Parameters of using Decision Tree to segment initial breaks. See detials: get_tree_breaks
Parameters used to control binning. See detials: select_best_class
, select_best_breaks
Colors of plots.See detials: love_color
,select some beatiful colors.
Logical, show model performance in current graphic device. Default is FALSE.
Logical, save results in locally specified folder. Default is FALSE.
The name for periodically saved data file. Default is NULL.
Logical, parallel computing. Default is FALSE.
The width of graphs.
The path for periodically saved graphic files.
The name of an independent variable.
Splitting points for an independent variable. Default is NULL.
# NOT RUN {
train_test = train_test_split(UCICreditCard[1:1000,], split_type = "Random",
prop = 0.8, save_data = FALSE)
dat_train = train_test$train
dat_test = train_test$test
get_plots(dat_train[, c(8, 26)], dat_test = dat_test[, c(8, 26)],
target = "default.payment.next.month")
# }
Run the code above in your browser using DataLab