# create some data
data <- Data(x =c (0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6,
seq(from=10, to=80, by=2)))
# Initialize a model
model <- LogisticLogNormal(mean=c(-0.85, 1),
cov=matrix(c(1, -0.5, -0.5, 1),
nrow=2),
refDose=56)
# Get samples from posterior
options <- McmcOptions(burnin=100,
step=2,
samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)
# posterior for Prob(DLT | dose=50)
tox.prob <- prob(dose=50, model=model, samples=samples)
# create data from the 'DataDual' class
data <- DataDual(x = c(25,50,25,50,75,300,250,150),
y = c(0,0,0,0,0,1,1,0),
w = c(0.31,0.42,0.59,0.45,0.6,0.7,0.6,0.52),
doseGrid = seq(25,300,25))
## Initialize a model from 'ModelTox' class e.g using 'LogisticIndepBeta' model
DLEmodel <- LogisticIndepBeta(binDLE=c(1.05,1.8),
DLEweights=c(3,3),
DLEdose=c(25,300),
data=data)
options <- McmcOptions(burnin=100, step=2, samples=200)
DLEsamples <- mcmc(data=data,model=DLEmodel,options=options)
tox.prob <- prob(dose=100, model = DLEmodel, samples = DLEsamples)
# create data from the 'DataDual' class
data <- DataDual(x = c(25,50,25,50,75,300,250,150),
y = c(0,0,0,0,0,1,1,0),
w = c(0.31,0.42,0.59,0.45,0.6,0.7,0.6,0.52),
doseGrid = seq(25,300,25))
## Initialize a model from 'ModelTox' class e.g using 'LogisticIndepBeta' model
DLEmodel <- LogisticIndepBeta(binDLE=c(1.05,1.8),
DLEweights=c(3,3),
DLEdose=c(25,300),
data=data)
tox.prob <- prob(dose=100, model = DLEmodel)
Run the code above in your browser using DataLab