
Predict the normalized data using a previously fitted normalization model.
normPred(normObj, newdata, factors = NULL, lg = TRUE, predfunc = predict, ...)
the result from normFit
an ExpressionSet
or a matrix
(in
which case the standards
must be passed on via
...
), possibly the same as used to fit the
normalization model in order to get the fitted data.
column names in the pheno data slot describing the biological factors. Or a design matrix.
logical indicating that the data should be log transformed
the function to use to get predicted values from the fitted object (only for crmn)
passed on to standardsPred
, standardsFit
,
odestandards, analytes
the normalized data
Apply fitted normalization parameters to new data to get normalized data. Current can not only handle matrices as input for methods 'RI' and 'one'.
normFit
# NOT RUN {
data(mix)
nfit <- normFit(mix, "crmn", factor="type", ncomp=3)
normedData <- normPred(nfit, mix, "type")
slplot(pca(t(log2(exprs(normedData)))), scol=as.integer(mix$type))
## same thing
Y <- exprs(mix)
G <- with(pData(mix), model.matrix(~-1+type))
isIS <- fData(mix)$tag == 'IS'
nfit <- normFit(Y, "crmn", factors=G, ncomp=3, standards=isIS)
normedData <- normPred(nfit, Y, G, standards=isIS)
slplot(pca(t(log2(normedData))), scol=as.integer(mix$type))
# }
Run the code above in your browser using DataLab