Learn R Programming

crqa (version 2.0.3)

lorenzattractor: Simulate the Lorenz Attractor

Description

An implementation of the Lorenz dynamical system, which describes the motion of a possible particle, which will neither converge to a steady state, nor diverge to infinity; but rather stay in a bounded but 'chaotically' defined region, i.e., an attractor.

Usage

lorenzattractor(numsteps, dt, sigma, r, b, plots)

Value

It returns a matrix with the 3 dimensions of the Lorenz

Arguments

numsteps

The number of simulated points

dt

System parameter

sigma

System parameter

r

System parameter

b

System parameter

plots

If TRUE, it plots the Lorenz obtained

Author

Moreno I. Coco (moreno.cocoi@gmail.com)

References

Lorenz, Edward Norton (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences 20(2) 130-141.

Examples

Run this code

## initialize the parameters
numsteps = 2 ^ 11; dt = .01; sigma = 10; r = 28; b = 8/3;
plots = TRUE

res = lorenzattractor(numsteps, dt, sigma, r, b, plots)

Run the code above in your browser using DataLab