mdFnn: Find optimal embedding dimension of a multi-dimensional dataset.
Description
Computes the percentage of false nearest
neighbors for multidimensional time series as a function
of embedding dimension.
Usage
mdFnn(data, tau, maxEmb, numSamples, Rtol, Atol)
Value
It returns the percentage of false neighbors for each embedding.
Arguments
data
The matrix of data to estimate FNN.
tau
Time delay for embedding.
maxEmb
Maximum number of embedding dimensions considered
numSamples
Number of randomly drawn coordinates from phase-space used to estimate FNN
Rtol
First distance criterion for separating false neighbors
Atol
Second distance criterion for separating false neighbors
Author
Sebastian Wallot, Max Planck Insitute for Empirical Aesthetics
Dan Moenster, Aarhus University,
Moreno I. Coco, University of East London
References
Kennel, M. B., Brown, R., & Abarbanel, H. D. (1992).
Determining embedding dimension for phase-space reconstruction using
a geometrical construction. Physical review A, 45, 3403.
Wallot, S., and Moenster, D. (2018). Calculation of average mutual
information (AMI) and false-nearest neighbors (FNN) for the
estimation of embedding parameters of multidimensional time-series in
Matlab. Front. Psychol. - Quantitative Psychology and Measurement