# NOT RUN {
## Example - we compute nonparametric instrumental regression of an
## Engel curve for food expenditure shares using Landweber-Fridman
## iteration of Fredholm integral equations of the first kind.
## We consider an equation with an endogenous predictor (`z') and an
## instrument (`w'). Let y = phi(z) + u where phi(z) is the function of
## interest. Here E(u|z) is not zero hence the conditional mean E(y|z)
## does not coincide with the function of interest, but if there exists
## an instrument w such that E(u|w) = 0, then we can recover the
## function of interest by solving an ill-posed inverse problem.
data(Engel95)
## Sort on logexp (the endogenous predictor) for plotting purposes
## (i.e. so we can plot a curve for the fitted values versus logexp)
Engel95 <- Engel95[order(Engel95$logexp),]
attach(Engel95)
model.iv <- crsiv(y=food,z=logexp,w=logwages,method="Landweber-Fridman")
phihat <- model.iv$phi
## Compute the non-IV regression (i.e. regress y on z)
ghat <- crs(food~logexp)
## For the plots, we restrict focal attention to the bulk of the data
## (i.e. for the plotting area trim out 1/4 of one percent from each
## tail of y and z). This is often helpful as estimates in the tails of
## the support are less reliable (i.e. more variable) so we are
## interested in examining the relationship `where the action is'.
trim <- 0.0025
plot(logexp,food,
ylab="Food Budget Share",
xlab="log(Total Expenditure)",
xlim=quantile(logexp,c(trim,1-trim)),
ylim=quantile(food,c(trim,1-trim)),
main="Nonparametric Instrumental Regression Splines",
type="p",
cex=.5,
col="lightgrey")
lines(logexp,phihat,col="blue",lwd=2,lty=2)
lines(logexp,fitted(ghat),col="red",lwd=2,lty=4)
legend(quantile(logexp,trim),quantile(food,1-trim),
c(expression(paste("Nonparametric IV: ",hat(varphi)(logexp))),
"Nonparametric Regression: E(food | logexp)"),
lty=c(2,4),
col=c("blue","red"),
lwd=c(2,2),
bty="n")
# }
Run the code above in your browser using DataLab