Learn R Programming

⚠️There's a newer version (3.10.2) of this package.Take me there.

See the NEWS file for recent updates!

ctsem allows for easy specification and fitting of a range of continuous and discrete time dynamic models, including multiple indicators (dynamic factor analysis), multiple, potentially higher order processes, and time dependent (varying within subject) and time independent (not varying within subject) covariates. Classic longitudinal models like latent growth curves and latent change score models are also possible. Version 1 of ctsem provided SEM based functionality by linking to the OpenMx software, allowing mixed effects models (random means but fixed regression and variance parameters) for multiple subjects. For version 2 of the R package ctsem, we include a Bayesian specification and fitting routine that uses the Stan probabilistic programming language, via the rstan package in R. This allows for all parameters of the dynamic model to individually vary, using an estimated population mean and variance, and any time independent covariate effects, as a prior. ctsem is documented in a JSS publication (Driver, Voelkle, Oud, 2017), and in R vignette form at https://cran.r-project.org/package=ctsem/vignettes/ctsem.pdf . The Bayesian approach is outlined in Introduction to Hierarchical Continuous Time Dynamic Modelling with ctsem, at https://github.com/cdriveraus/ctsem/raw/master/vignettes/hierarchicalmanual.pdf . To cite ctsem please use the citation(“ctsem”) command in R.

To install the github version, use:

remotes::install_github('cdriveraus/ctsem', INSTALL_opts = "--no-multiarch", dependencies = c("Depends", "Imports"))

Troubleshooting Rstan / Rtools install for Windows:

Ensure recent version of R and Rtools is installed.

try including these lines in home/.R/makevars. :

CXX14 = g++ -std=c++1y
CXX14FLAGS = -O3 -Wno-unused-variable -Wno-unused-function

If makevars does not exist, run this code within R:

dotR <- file.path(Sys.getenv("HOME"), ".R")
if (!file.exists(dotR)) dir.create(dotR)
M <- file.path(dotR, ifelse(.Platform$OS.type == "windows", "Makevars.win", "Makevars"))
if (!file.exists(M)) file.create(M)
cat("\nCXX14FLAGS=-O3 -march=native -mtune=native",
    if( grepl("^darwin", R.version$os)) "CXX14FLAGS += -arch x86_64 -ftemplate-depth-256" else
    if (.Platform$OS.type == "windows") "CXX11FLAGS=-O3 -march=native -mtune=native" else
    "CXX14FLAGS += -fPIC",
    file = M, sep = "\n", append = TRUE)

In case of compile errors like g++ not found, ensure the devtools package is installed:

install.packages('devtools')

and include the following in your .Rprofile

library(devtools)
Sys.setenv(PATH = paste("C:/Rtools/bin", Sys.getenv("PATH"), sep=";"))
Sys.setenv(PATH = paste("C:\\Rtools\\mingw_64\\bin", Sys.getenv("PATH"), sep=";"))
Sys.setenv(BINPREF = "C:/Rtools/mingw_$(WIN)/bin/")

Copy Link

Version

Install

install.packages('ctsem')

Monthly Downloads

899

Version

3.0.1

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Charles Driver

Last Published

August 23rd, 2019

Functions in ctsem (3.0.1)

Oscillating

Oscillating
AnomAuth

AnomAuth
ctCompareExpected

ctCompareExpected Compares model implied to observed means and covariances for panel data fit with ctsem.
ctCheckFit

Check absolute fit of ctFit or ctStanFit object.
ctDensity

ctDensity
ctExample2

ctExample2
ctExample4

ctExample4
ctExample3

ctExample3
ctFit

Fit a ctsem object
ctGenerate

ctGenerate
ctExample2level

ctExample2level
ctExample1

ctExample1
ctExample1TIpred

ctExample1TIpred
ctKalman

ctKalman
ctIntervalise

Converts absolute times to intervals for wide format ctsem panel data
ctGenerateFromFit

Generates data according to the model estimated in a ctsemFit object.
ctIndplot

ctIndplot
ctModelLatex

Generate and optionally compile latex equation of subject level ctsem model.
ctDiscretiseData

Discretise long format continuous time (ctsem) data to specific timestep.
ctDocs

Get documentation pdf for ctsem
ctMultigroupFit

Fits a multiple group continuous time model.
ctDeintervalise

ctDeintervalise
ctModelFromFit

Extract a ctsem model structure with parameter values from a ctsem fit object.
ctPlot

ctPlot
ctModel

Define a ctsem model
ctStanFit

ctStanFit
ctPoly

Plots uncertainty bands with shading
ctKalmanPlot

ctKalmanPlot
ctStanParMatrices

Returns population system matrices from a ctStanFit object, and vector of values for free parameters.
plot.ctStanFit

plot.ctStanFit
ctPlotArray

Plots three dimensional y values for quantile plots
inv_logit

Inverse logit
ctStanParnames

ctStanParnames
isdiag

Diagnostics for ctsem importance sampling
ctWideToLong

ctWideToLong Convert ctsem wide to long format
ctStanPlotPost

ctStanPlotPost
ctsem

ctsem
ctStanPostPredict

Compares model implied density and values to observed, for a ctStanFit object.
ctPostPredict

Posterior predictive type check for ctsemFit.
ctStanKalman

Get Kalman filter estimates from a ctStanFit object
ctRefineTo

ctRefineTo
ctStanContinuousPars

ctStanContinuousPars
ctLongToWide

ctLongToWide Restructures time series / panel data from long format to wide format for ctsem analysis
ctStanDiscretePars

ctStanDiscretePars
summary.ctsemFit

Summary function for ctsemFit object
summary.ctStanFit

summary.ctStanFit
ctStanGenerateFromFit

Add a $generated object to ctstanfit object, with random data generated from posterior of ctstanfit object
ctStanTIpredMarginal

Plot marginal relationships between covariates and parameters for a ctStanFit object.
ctStanModel

Convert a frequentist (omx) ctsem model specification to Bayesian (Stan).
ctWideNames

ctWideNames sets default column names for wide ctsem datasets. Primarily intended for internal ctsem usage.
ctStanUpdModel

Update an already compiled and fit ctStanFit object
datastructure

datastructure
plot.ctsemFit

Plotting function for object class ctsemFit
ctStanDiscreteParsPlot

ctStanDiscreteParsPlot
extract

Extract samples from a ctStanFit object
stan_checkdivergences

Analyse divergences in a stanfit object
stanWplot

Runs stan, and plots sampling information while sampling.
summary.ctsemMultigroupFit

Summary function for ctsemMultigroupFit object
plot.ctsemFitMeasure

Misspecification plot using ctCheckFit output
longexample

longexample
plot.ctStanModel

Prior plotting
ctstantestdat

ctstantestdat
stan_confidenceRegion

Extract functions of multiple variables from a stanfit object
ctStanTIpredeffects

Get time independent predictor effect estimates
stan_postcalc

Compute functions of matrices from samples of a stanfit object
ctstantestfit

ctstantestfit
msquare

Right multiply a matrix by its transpose.
plot.ctsemMultigroupFit

Plot function for ctsemMultigroupFit object
stan_unconstrainsamples

Convert samples from a stanfit object to the unconstrained scale
stanoptimis

Optimize / importance sample a stan or ctStan model.
sdpcor2cov

sdcor2cov
ctCollapse

ctCollapse Easily collapse an array margin using a specified function.
ctCI

ctCI Computes confidence intervals on specified parameters / matrices for already fitted ctsem fit object.
ctDiscretePars

ctDiscretePars
Kalman

Kalman