An Extension of plyr to Overlapping Data Problems
Usage Example
Compute a running mean within each subset of trials in the current block using all trials before the current trial:
library('cumplyr')
data(rt.data)
print(rt.data)
results <- iddply(rt.data,
equality.variables = c('Subject', 'Block'),
upper.bound.variables = c('Trial'),
func = function (df) {with(df, mean(RT))})
names(results) <- c('Subject', 'Block', 'Trial', 'CumulativeMeanRT')
print(results)
Second Usage Example
library('cumplyr')
data <- data.frame(Time = 1:5, Value = seq(1, 9, by = 2))
iddply(data,
equality.variables = c('Time'),
lower.bound.variables = c(),
upper.bound.variables = c(),
norm.ball.variables = list(),
func = function (df) {with(df, mean(Value))})
iddply(data,
equality.variables = c(),
lower.bound.variables = c('Time'),
upper.bound.variables = c(),
norm.ball.variables = list(),
func = function (df) {with(df, mean(Value))})
iddply(data,
equality.variables = c(),
lower.bound.variables = c(),
upper.bound.variables = c('Time'),
norm.ball.variables = list(),
func = function (df) {with(df, mean(Value))})
iddply(data,
equality.variables = c(),
lower.bound.variables = c(),
upper.bound.variables = c(),
norm.ball.variables = list('Time' = 1),
func = function (df) {with(df, mean(Value))})
iddply(data,
equality.variables = c(),
lower.bound.variables = c(),
upper.bound.variables = c(),
norm.ball.variables = list('Time' = 2),
func = function (df) {with(df, mean(Value))})
iddply(data,
equality.variables = c(),
lower.bound.variables = c(),
upper.bound.variables = c(),
norm.ball.variables = list('Time' = 5),
func = function (df) {with(df, mean(Value))})