library("curesurv")
library("survival")
fit_m2_ml <- curesurv(Surv(time_obs, event) ~ age_cr|age_cr,
pophaz = "ehazard",
cumpophaz = "cumehazard",
model = "mixture",
data = pancreas_data,
method_opt = "L-BFGS-B")
fit_m2_ml
newdata <- pancreas_data[2,]
predict(object = fit_m2_ml, newdata = newdata)
## Non mixture cure model
### TNEH model
#### Additive parametrization
testiscancer$age_crmin <- (testiscancer$age- min(testiscancer$age)) /
sd(testiscancer$age)
fit_m1_ad_tneh <- curesurv(Surv(time_obs, event) ~ z_tau(age_crmin) +
z_alpha(age_crmin),
pophaz = "ehazard",
cumpophaz = "cumehazard",
model = "nmixture", dist = "tneh",
link_tau = "linear",
data = testiscancer,
method_opt = "L-BFGS-B")
fit_m1_ad_tneh
predict(object = fit_m1_ad_tneh, newdata = testiscancer[3:6,])
#mean of age
newdata1 <- with(testiscancer,
expand.grid(event = 0, age_crmin = mean(age_crmin), time_obs = seq(0.001,10,0.1)))
pred_agemean <- predict(object = fit_m1_ad_tneh, newdata = newdata1)
#max of age
newdata2 <- with(testiscancer,
expand.grid(event = 0,
age_crmin = max(age_crmin),
time_obs = seq(0.001,10,0.1)))
pred_agemax <- predict(object = fit_m1_ad_tneh, newdata = newdata2)
head(pred_agemax)
Run the code above in your browser using DataLab