powered by
Calculate the misclassification cost from true positives, false positives, true negatives and false negatives. The inputs must be vectors of equal length. misclassification_cost = cost_fp * fp + cost_fn * fn
misclassification_cost(tp, fp, tn, fn, cost_fp = 1, cost_fn = 1, ...)
(numeric) number of true positives.
(numeric) number of false positives.
(numeric) number of true negatives.
(numeric) number of false negatives.
(numeric) the cost of a false positive
(numeric) the cost of a false negative
for capturing additional arguments passed by method.
Other metric functions: F1_score(), Jaccard(), abs_d_ppv_npv(), abs_d_sens_spec(), accuracy(), cohens_kappa(), cutpoint(), false_omission_rate(), metric_constrain(), npv(), odds_ratio(), p_chisquared(), plr(), ppv(), precision(), prod_ppv_npv(), prod_sens_spec(), recall(), risk_ratio(), roc01(), sensitivity(), specificity(), sum_ppv_npv(), sum_sens_spec(), total_utility(), tp(), tpr(), youden()
F1_score()
Jaccard()
abs_d_ppv_npv()
abs_d_sens_spec()
accuracy()
cohens_kappa()
cutpoint()
false_omission_rate()
metric_constrain()
npv()
odds_ratio()
p_chisquared()
plr()
ppv()
precision()
prod_ppv_npv()
prod_sens_spec()
recall()
risk_ratio()
roc01()
sensitivity()
specificity()
sum_ppv_npv()
sum_sens_spec()
total_utility()
tp()
tpr()
youden()
misclassification_cost(10, 5, 20, 10, cost_fp = 1, cost_fn = 5) misclassification_cost(c(10, 8), c(5, 7), c(20, 12), c(10, 18), cost_fp = 1, cost_fn = 5)
Run the code above in your browser using DataLab