lifecycle::badge("experimental")
Enable/disable metrics for multinomial evaluation. Can be supplied to the
`metrics`
argument in many of the cvms
functions.
Note: Some functions may have slightly different defaults than the ones supplied here.
multinomial_metrics(
all = NULL,
overall_accuracy = NULL,
balanced_accuracy = NULL,
w_balanced_accuracy = NULL,
accuracy = NULL,
w_accuracy = NULL,
f1 = NULL,
w_f1 = NULL,
sensitivity = NULL,
w_sensitivity = NULL,
specificity = NULL,
w_specificity = NULL,
pos_pred_value = NULL,
w_pos_pred_value = NULL,
neg_pred_value = NULL,
w_neg_pred_value = NULL,
auc = NULL,
kappa = NULL,
w_kappa = NULL,
mcc = NULL,
detection_rate = NULL,
w_detection_rate = NULL,
detection_prevalence = NULL,
w_detection_prevalence = NULL,
prevalence = NULL,
w_prevalence = NULL,
false_neg_rate = NULL,
w_false_neg_rate = NULL,
false_pos_rate = NULL,
w_false_pos_rate = NULL,
false_discovery_rate = NULL,
w_false_discovery_rate = NULL,
false_omission_rate = NULL,
w_false_omission_rate = NULL,
threat_score = NULL,
w_threat_score = NULL,
aic = NULL,
aicc = NULL,
bic = NULL
)
Enable/disable all arguments at once. (Logical)
Specifying other metrics will overwrite this, why you can
use (all = FALSE, accuracy = TRUE
) to get only the Accuracy metric.
Overall Accuracy
(Default: TRUE)
Macro Balanced Accuracy
(Default: TRUE)
Weighted Balanced Accuracy
(Default: FALSE)
Accuracy
(Default: FALSE)
Weighted Accuracy
(Default: FALSE)
F1
(Default: TRUE)
Weighted F1
(Default: FALSE)
Sensitivity
(Default: TRUE)
Weighted Sensitivity
(Default: FALSE)
Specificity
(Default: TRUE)
Weighted Specificity
(Default: FALSE)
Pos Pred Value
(Default: TRUE)
Weighted Pos Pred Value
(Default: FALSE)
Neg Pred Value
(Default: TRUE)
Weighted Neg Pred Value
(Default: FALSE)
AUC
(Default: FALSE)
Kappa
(Default: TRUE)
Weighted Kappa
(Default: FALSE)
MCC
(Default: TRUE)
Multiclass Matthews Correlation Coefficient.
Detection Rate
(Default: TRUE)
Weighted Detection Rate
(Default: FALSE)
Detection Prevalence
(Default: TRUE)
Weighted Detection Prevalence
(Default: FALSE)
Prevalence
(Default: TRUE)
Weighted Prevalence
(Default: FALSE)
False Neg Rate
(Default: FALSE)
Weighted False Neg Rate
(Default: FALSE)
False Pos Rate
(Default: FALSE)
Weighted False Pos Rate
(Default: FALSE)
False Discovery Rate
(Default: FALSE)
Weighted False Discovery Rate
(Default: FALSE)
False Omission Rate
(Default: FALSE)
Weighted False Omission Rate
(Default: FALSE)
Threat Score
(Default: FALSE)
Weighted Threat Score
(Default: FALSE)
AIC. (Default: FALSE)
AICc. (Default: FALSE)
BIC. (Default: FALSE)
Ludvig Renbo Olsen, r-pkgs@ludvigolsen.dk
Other evaluation functions:
binomial_metrics()
,
confusion_matrix()
,
evaluate()
,
evaluate_residuals()
,
gaussian_metrics()
# \donttest{
# Attach packages
library(cvms)
# Enable only Balanced Accuracy
multinomial_metrics(all = FALSE, balanced_accuracy = TRUE)
# Enable all but Balanced Accuracy
multinomial_metrics(all = TRUE, balanced_accuracy = FALSE)
# Disable Balanced Accuracy
multinomial_metrics(balanced_accuracy = FALSE)
# }
Run the code above in your browser using DataLab