scm( m, n )
EulerPhi( n )
gcd( a, b )
Euclid( a, b )
Inv(a, n)
modexp( a, b, n )
Arguments
a,b,m,n
Integer
Value
EulerPhi Eulers totient function = number of divisors of n.
scm, gcd Smallest common multiple, Greatest common divisor.
Euclid Computes x, y from a, b such that the equation a*x + b*y = gcd(m,n) is satisfied.
Inv Modular inverse in a finite ring, NA if not exists.
modexp Exponentiation modulo an integer via binary decomposition of exponent.