Learn R Programming

dBlockmodeling (version 0.1.1)

tmklmed: Two-Mode Blockmodeling (Structural Equivalence) Heuristic

Description

This function runs two-mode KL-medians for an \(RO x CO\) network matrix.

Usage

tmklmed(A, RC, CC, TLIMIT)

Arguments

A

An \(RO x CO\) two-mode network matrix.

RC

The number of clusters for row objects (\(1 < RC < RO\)).

CC

The number of clusters for column objects (\(1 < CC < CO\)).

TLIMIT

A desired time limit.

Value

The function returns the following:

  • objval - total number of inconsistencies;

  • RP - an \(RO\)-dimensional vector of row cluser assignements;

  • RC - an \(RC\)-dimensional vector of column cluser assignements;

  • restarts - the number of restarts within the time limit.

References

Brusco, M. J., Doreian, P., & Steinley, D. (2019). Deterministic blockmodeling of signed and two-mode networks: a tutorial with psychological examples. British Journal of Mathematical and Statistical Psychology.

Doreian, P., Batagelj, V., & Ferligoj, A. (2004). Generalized blockmodeling of two-mode network data. Social Networks, 26, 29-53. doi:10.1016/j.socnet.2004.01.002

Brusco, M., Stolze, H. J., Hoffman, M., Steinley, D., & Doreian, P. (2018). Deterministic blockmodeling of two-mode binary network data using two-mode KL-median partitioning. Journal of Social Structure, 19, 1-21. Retrieved from: https://www.exeley.com/exeley/journals/journal_of_social_structure/19/1/pdf/10.21307_joss-2018-007.pdf

Examples

Run this code
# NOT RUN {
# Load the Turning Point Project network (Brusco & Doreian, 2015) data.
data("nyt")

# Run the two-mode blockmodeling heuristic procedure.
res <- tmklmed(nyt, RC = 9, CC = 5, TLIMIT = 1)

# See the results.
res
# }

Run the code above in your browser using DataLab