The function computes and plots the estimator of the auto-distance correlation
matrix mADCF
.
mADCFplot(x, MaxLag = 15, alpha = 0.05, b = 499,
bootMethod = c("Wild Bootstrap", "Independent Bootstrap"),
ylim = NULL)
A plot of the estimated mADCF
matrices. The function also
returns a list including
Sample distance correlation matrices starting from lag 0.
The method followed for computing the \((1-\alpha)\)% confidence intervals of the plot.
The critical value shown in the plot.
A multivariate time series.
The maximum lag order at which to plot mADCF
. Default is 15.
The significance level used to construct the \((1-\alpha)\)% empirical critical values.
The number of bootstrap replications for constructing the \((1-\alpha)\)% empirical critical values. Default is 499.
A character string indicating the method to use for obtaining the \((1-\alpha)\)% critical values. Possible choices are "Wild Bootstrap" (the default) and "Independent Bootstrap".
A numeric vector of length 2 indicating the y
limits of the plot.
The default value, NULL, indicates that the range \((0,v)\), where
\(v\) is the maximum number between 1 and the empirical critical values,
should be used.
Maria Pitsillou and Konstantinos Fokianos.
The \((1-\alpha)\)% confidence intervals shown in the plot
(dotted blue horizontal line) are computed simultaneously based
on the independent wild bootstrap approach (Dehling and Mikosch,
1994; Shao, 2010; Leucht and Neumann, 2013), since the
elements of mADCV
(and thus mADCF
) can be
expressed as degenerate V-statistics of order 2.
More details can be found in Fokianos and Pitsillou (2017).
In addition, mADCFplot
provides the option of independent
bootstrap to compute the simultaneous
\((1-\alpha)\)% critical values.
Edelmann, D, K. Fokianos. and M. Pitsillou. (2019). An Updated Literature Review of Distance Correlation and Its Applications to Time Series. International Statistical Review, 87, 237-262.
Dehling, H. and T. Mikosch (1994). Random quadratic forms and the bootstrap for U-statistics. Journal of Multivariate Analysis, 51, 392-413.
Fokianos K. and Pitsillou M. (2018). Testing independence for multivariate time series via the auto-distance correlation matrix. Biometrika, 105, 337-352.
Fokianos K. and M. Pitsillou (2017). Consistent testing for pairwise dependence in time series. Technometrics, 159, 262-3270.
Huo, X. and G. J. Szekely. (2016). Fast Computing for Distance Covariance. Technometrics, 58, 435-447.
Leucht, A. and M. H. Neumann (2013). Dependent wild bootstrap for degenerate U- and V- statistics. Journal of Multivariate Analysis, 117, 257-280.
Pitsillou M. and Fokianos K. (2016). dCovTS: Distance Covariance/Correlation for Time Series. R Journal, 8, 324-340.
Shao, X. (2010). The dependent wild bootstrap. Journal of the American Statistical Association, 105, 218-235.
mADCF
, mADCV
# \donttest{
### x <- matrix( rnorm(200), ncol = 2 )
### mADCFplot(x, 12, ylim = c(0, 0.5) )
### mADCFplot(x, 12, b = 100)
# }
Run the code above in your browser using DataLab