## piecewise linear signal
l = 1200
h = seq(150,by=150,length.out=6)
jump = rep(0,7)
beta1 = c(2,-1,2.5,-3,-0.2,2.5)/50
beta1 = c(beta1,-sum(beta1*(c(h[1],diff(h))))/(l-tail(h,1)))
signal = gen.signal(l,h,jump,beta1)
noise = rnorm(length(signal),0,1)
gamma = 25
model = dstem(signal + noise,"I",gamma=gamma,alpha=0.05)
## piecewise constant
l = 1200
h = seq(150,by=150,length.out=6)
jump = c(0,1.5,2,2.2,1.8,2,1.5)
beta1 = rep(0,length(h)+1)
signal = gen.signal(l,h,jump,beta1)
noise = rnorm(length(signal),0,1)
gamma = 25
model = dstem(signal + noise, "II-step",gamma,alpha=0.05)
## piecewise linear with jump
l = 1200
h = seq(150,by=150,length.out=6)
jump = c(0,1.5,2,2.2,1.8,2,1.5)*3
beta1 = c(2,-1,2.5,-3,-0.2,2.5,-0.5)/50
signal = gen.signal(l=l,h=h,jump=jump,b1=beta1)
noise = rnorm(length(signal),0,1)
gamma = 25
model = dstem(signal + noise, "II-linear",gamma,alpha=0.05)
Run the code above in your browser using DataLab