Learn R Programming

daltoolbox (version 1.1.727)

reg_svm: SVM for regression

Description

Creates a regression object that uses the Support Vector Machine (SVM) method for regression It wraps the e1071 and svm library.

Usage

reg_svm(attribute, epsilon = 0.1, cost = 10, kernel = "radial")

Value

returns a SVM regression object

Arguments

attribute

attribute target to model building

epsilon

parameter that controls the width of the margin around the separating hyperplane

cost

parameter that controls the trade-off between having a wide margin and correctly classifying training data points

kernel

the type of kernel function to be used in the SVM algorithm (linear, radial, polynomial, sigmoid)

Examples

Run this code
data(Boston)
model <- reg_svm("medv", epsilon=0.2,cost=40.000)

# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, Boston)
train <- sr$train
test <- sr$test

model <- fit(model, train)

test_prediction <- predict(model, test)
test_predictand <- test[,"medv"]
test_eval <- evaluate(model, test_predictand, test_prediction)
test_eval$metrics

Run the code above in your browser using DataLab