Fine tuning function for the deep architecture
# S4 method for DArch
fineTuneDArch(darch, dataSet, dataSetValid = NULL,
numEpochs = 1, isClass = TRUE, stopErr = -Inf, stopClassErr = 101,
stopValidErr = -Inf, stopValidClassErr = 101,
shuffleTrainData = getParameter(".shuffleTrainData", T),
debugMode = getParameter(".debug", F), ...)
The number of training iterations
Indicates whether the training is for a classification net.
When TRUE
then statistics for classification will be determind.
Default is TRUE
Stop criteria for the error on the train data. Default is
-Inf
Stop criteria for the classification error on the train
data. Default is 101
Stop criteria for the error on the validation data.
Default is -Inf
.
Stop criteria for the classification error on the
validation data. Default is 101
.
Whether to shuffle train data before each epoch.
Whether to enable debug mode, internal parameter.
Additional parameters for the training function