# NOT RUN {
set.seed(45)
require(data.table)
DT <- data.table(
i_1 = c(1:5, NA),
i_2 = c(NA,6,7,8,9,10),
f_1 = factor(sample(c(letters[1:3], NA), 6, TRUE)),
f_2 = factor(c("z", "a", "x", "c", "x", "x"), ordered=TRUE),
c_1 = sample(c(letters[1:3], NA), 6, TRUE),
d_1 = as.Date(c(1:3,NA,4:5), origin="2013-09-01"),
d_2 = as.Date(6:1, origin="2012-01-01"))
# add a couple of list cols
DT[, l_1 := DT[, list(c=list(rep(i_1, sample(5,1)))), by = i_1]$c]
DT[, l_2 := DT[, list(c=list(rep(c_1, sample(5,1)))), by = i_1]$c]
# id, measure as character/integer/numeric vectors
melt(DT, id=1:2, measure="f_1")
melt(DT, id=c("i_1", "i_2"), measure=3) # same as above
melt(DT, id=1:2, measure=3L, value.factor=TRUE) # same, but 'value' is factor
melt(DT, id=1:2, measure=3:4, value.factor=TRUE) # 'value' is *ordered* factor
# preserves attribute when types are identical, ex: Date
melt(DT, id=3:4, measure=c("d_1", "d_2"))
melt(DT, id=3:4, measure=c("i_1", "d_1")) # attribute not preserved
# on list
melt(DT, id=1, measure=c("l_1", "l_2")) # value is a list
melt(DT, id=1, measure=c("c_1", "l_1")) # c1 coerced to list
# on character
melt(DT, id=1, measure=c("c_1", "f_1")) # value is char
melt(DT, id=1, measure=c("c_1", "i_2")) # i2 coerced to char
# on na.rm=TRUE. NAs are removed efficiently, from within C
melt(DT, id=1, measure=c("c_1", "i_2"), na.rm=TRUE) # remove NA
# measure.vars can be also a list
# melt "f_1,f_2" and "d_1,d_2" simultaneously, retain 'factor' attribute
# convenient way using internal function patterns()
melt(DT, id=1:2, measure=patterns("^f_", "^d_"), value.factor=TRUE)
# same as above, but provide list of columns directly by column names or indices
melt(DT, id=1:2, measure=list(3:4, c("d_1", "d_2")), value.factor=TRUE)
# na.rm=TRUE removes rows with NAs in any 'value' columns
melt(DT, id=1:2, measure=patterns("f_", "d_"), value.factor=TRUE, na.rm=TRUE)
# return 'NA' for missing columns, 'na.rm=TRUE' ignored due to list column
melt(DT, id=1:2, measure=patterns("l_", "c_"), na.rm=TRUE)
# }
Run the code above in your browser using DataLab