Learn R Programming

dataMaid (version 1.4.2)

A Suite of Checks for Identification of Potential Errors in a Data Frame as Part of the Data Screening Process

Description

Data screening is an important first step of any statistical analysis. dataMaid auto generates a customizable data report with a thorough summary of the checks and the results that a human can use to identify possible errors. It provides an extendable suite of test for common potential errors in a dataset.

Copy Link

Version

Install

install.packages('dataMaid')

Monthly Downloads

905

Version

1.4.2

License

GPL-2

Issues

Pull Requests

Stars

Forks

Maintainer

Claus Ekstrom

Last Published

April 13th, 2025

Functions in dataMaid (1.4.2)

countMissing

Summary function for missing values
defaultIntegerChecks

Default checks for integer variables
defaultIntegerSummaries

Default summary functions for integer variables
defaultHavenlabelledChecks

Default checks for haven_labelled variables
defaultHavenlabelledSummaries

Default summary functions for haven_labelled variables
identifyNums

A checkFunction
checkResult

Create object of class checkResult
identifyMissing

A checkFunction for identifying miscoded missing values.
defaultLogicalChecks

Default checks for logical variables
defaultLogicalSummaries

Default summary functions for logical variables
checkFunction

Create an object of class checkFunction
exampleData

Example data with zero-inflated variables
description

Extract the contents of the attribute description
identifyWhitespace

A checkFunction for identifying whitespace
defaultLabelledSummaries

Default summary functions for labelled variables
isCPR

Check if a variable consists of Danish CPR numbers
defaultLabelledChecks

Default checks for labelled variables
identifyOutliersTBStyle

A checkFunction for identifying outliers Turkey Boxstole style
defaultCharacterChecks

Default checks for character variables
defaultCharacterSummaries

Default summary functions for character variables
isSupported

Check if a variable has a class supported by dataMaid
minMax

summaryFunction for minimum and maximum
identifyOutliers

A checkFunction for identifying outliers
defaultDateChecks

Default checks for Date variables
presidentData

Semi-artificial data about the US presidents
quartiles

summaryFunction for quartiles
refCat

summaryFunction that finds reference level for factor variables
makeCodebook

Produce a data codebook
testData

Extended example data to test the features of dataMaid
tableVisual

Produce tables for the makeDataReport visualizations.
setVisuals

Set visual arguments for makeDataReport
isSingular

Check if a variable only contains a single value
setSummaries

Set summary arguments for makeDataReport
isKey

Check if a variable qualifies as a key
variableType

Summary function for original class
visualFunction

Create an object of class visualFunction
whoami_available

Find out if the whoami package binaries is installed (git + whoami)
visualize

Produce distribution plots
standardVisual

Produce distribution plots using ggplot from ggplot2.
summarize

Summarize a variable/dataset
render

Simplified Rmarkdown rendering
setChecks

Set check arguments for makeDataReport
identifyCaseIssues

A checkFunction for identifying case issues
identifyLoners

A checkFunction for identifying sparsely represented values (loners)
defaultDateSummaries

Default summary functions for Date variables
defaultNumericChecks

Default checks for numeric variables
defaultNumericSummaries

Default summary functions for numeric variables
summaryFunction

Create an object of class summaryFunction
makeDataReport

Produce a data report
summaryResult

Create object of class summaryResult
messageGenerator

Produce a message for the output of a checkFunction
toyData

Small example data to show the features of dataMaid
uniqueValues

summaryFunction for unique values
centralValue

summaryFunction for central values
artData

Semi-artificial data about masterpieces of art
allSummaryFunctions

Overview of all available summaryFunctions
allCheckFunctions

Overview of all available checkFunctions
allClasses

Vector of all variable classes in dataMaid
basicVisual

allVisualFunctions

Overview of all available visualFunctions
basicVisualCFLB

importFrom stats na.omit
defaultFactorChecks

Default checks for factor variables
classes

Extract the contents of the attribute classes
defaultFactorSummaries

Default summary functions for factor variables
bigPresidentData

Semi-artificial data about the US presidents (extended version)
check

Perform checks of potential errors in variable/dataset