For each participant, check, if an observation was expected, given the
PART_VARS
from item-level metadata
int_part_vars_structure(
study_data,
meta_data,
label_col = LABEL,
expected_observations = c("HIERARCHY", "SEGMENT"),
disclose_problem_paprt_var_data = FALSE
)
empty list, so far -- the function only warns.
study_data must have all relevant PART_VARS
to avoid
false-positives on PART_VARS
missing from
study_data
meta_data must be complete to avoid false positives on
non-existing PART_VARS
character mapping attribute colnames(study_data)
vs.
meta_data[label_col]
enum HIERARCHY | SEGMENT. How should
PART_VARS
be handled:
- SEGMENT
: if PART_VAR
is 1, an
observation is expected
- HIERARCHY
: the default, if the
PART_VAR
is 1 for this variable and
also for all PART_VARS
of PART_VARS
up in the hierarchy, an observation is
expected.
logical show the problematic data
(PART_VAR
only)
Descriptor