Add a human readable, easier to understand label as a metadata attribute to a variable or vector than the programmatic vector object name, or column name in the data frame.
# S3 method for defined
var_label(x, ...)# S3 method for dataset_df
var_label(
x,
unlist = FALSE,
null_action = c("keep", "fill", "skip", "na", "empty"),
recurse = FALSE,
...
)
label_attribute(x)
# S3 method for defined
var_label(x) <- value
# S3 method for dataset_df
var_label(x) <- value
var_label()
returns returns the label
attribute as a character
string.
The var_label<-
assignment method allows to add, remove, or overwrite this attribute on a vector
x
. The assignment function returns the x
vector invisibly.
a vector or a data.frame
Further potential parameters reserved for inherited classes.
for data frames, return a named vector instead of a list
for data frames, by default NULL
will be returned for
columns with no variable label. Use "fill"
to populate with the column name
instead, "skip"
to remove such values from the returned list, "na"
to
populate with NA
or "empty"
to populate with an empty string (""
).
if TRUE
, will apply var_label()
on packed columns
(see tidyr::pack()
) to return the variable labels of each sub-column;
otherwise, the label of the group of columns will be returned.
a character string or NULL
to remove the label
For data frames, with var_labels()
, it could also be a named list or a
character vector of same length as the number of columns in x
.
See labelled::var_label
for details about
variable labels.
See vignette("defined", package = "dataset")
to use comprehensively
with variable labels, namespaces, units of measures, and machine-independent
permanent variable identifiers.
Other defined metadata methods and functions:
defined()
,
var_namespace()
,
var_unit()
iris_dataset_2 <- iris_dataset
# Retrieve the label attribute:
var_label(iris_dataset_2$Sepal.Length)
Run the code above in your browser using DataLab