dat <- data.frame(
c1 = c(1, 2, NA, 4),
c2 = c(NA, 2, NA, 5),
c3 = c(NA, 4, NA, NA),
c4 = c(2, 3, 7, 8)
)
# default, all means are shown, if no NA values are present
row_means(dat)
# remove all NA before computing row means
row_means(dat, remove_na = TRUE)
# needs at least 4 non-missing values per row
row_means(dat, min_valid = 4) # 1 valid return value
# needs at least 3 non-missing values per row
row_means(dat, min_valid = 3) # 2 valid return values
# needs at least 2 non-missing values per row
row_means(dat, min_valid = 2)
# needs at least 1 non-missing value per row, for two selected variables
row_means(dat, select = c("c1", "c3"), min_valid = 1)
# needs at least 50% of non-missing values per row
row_means(dat, min_valid = 0.5) # 3 valid return values
# needs at least 75% of non-missing values per row
row_means(dat, min_valid = 0.75) # 2 valid return values
Run the code above in your browser using DataLab