Usage
## S3 method for class 'array':
dcemri.spline(conc, time, img.mask, time.input=time,
model="weinmann", aif="tofts.kermode", user=NULL,
aif.observed=NULL, nriters=500, thin=5,
burnin=100, ab.hyper=c(1e-5,1e-5),
ab.tauepsilon=c(1,1/1000), k=4, p=25, rw=2,
knots=NULL, nlr=FALSE, t0.compute=FALSE,
samples=FALSE, multicore=FALSE, verbose=FALSE,
response=FALSE, fitted=FALSE,
...)
dcemri.spline.single(conc, time, D, time.input, p, rw, knots, k,
A, t0.compute=FALSE, nlr=FALSE, nriters=500,
thin=5, burnin=100, ab.hyper=c(1e-5,1e-5),
ab.tauepsilon=c(1,1/1000), silent=0,
multicore=FALSE, model=NULL,
model.func=NULL, model.guess=NULL,
samples=FALSE, B=NULL)Arguments
conc
Matrix or array of concentration time series (last
dimension must be time).
img.mask
Mask matrix or array. Voxels with mask = 0 will
be excluded.
time.input
Time in minutes for observed arterial
input function (default = time).
aif
is a character string that identifies the parameters of the
arterial input function. Acceptable values are:
tofts.kermode, fritz.hansen or observed. If
observed you must provide the obse
aif.observed
is the user-defined vector of arterial
concentrations observed at time.input (only for
aif=observed).
multicore
(logical) use the multicore package. verbose
(logical) allows text-based feedback during execution
of the function (default = FALSE).
samples
If TRUE output includes samples drawn
from the posterior distribution for all parameters.
nlr
If TRUE, a response model is fitted to the estimated
response function.
model
Only if nlr = TRUE Response model fitted to the
estimated response function. Acceptable values include:
"AATH" or "weinmann" (default).
ab.hyper
Hyper priors for adaptive smoothness parameter
ab.tauepsilon
Hyper-prior parameters for observation error
Gamma prior.
p
Number of knots of B-Spline basis.
t0.compute
If TRUE, the onset time will be estimated
from response function.
knots
Vector of knots. Use this if you need unequally spaced
knots.
rw
Order of random walk prior. Acceptable values are 1 and 2.
nriters
Total number of iterations.
burnin
Number of iterations for burn-in.
response
If TRUE, the response functions per voxel are
returned.
fitted
If TRUE, then fitted time curved per voxel are
returned.