Package: |
ddst |
Type: |
Package |
Version: |
1.3 |
Date: |
2008-07-01 |
License: |
GPL-2 |
Buhler, W.J., Puri, P.S. (1966). On optimal asymptotic tests of composite hypotheses with several constraints. Z. Wahrsch. verw. Geb. 5, 71--88.
Inglot, T., Ledwina, T. (2006 a). Data-driven score tests for homoscedastic linear regression model: asymptotic results. Probab. Math. Statist. 26, 41--61.
Inglot, T., Ledwina, T. (2006 b). Data-driven score tests for homoscedastic linear regression model: the construction and simulations. In Prague Stochastics 2006. Proceedings, (eds. M. Huskova, M. Janzura), 124--137. Matfyzpress, Prague.
Inglot, T., Ledwina, T. (2006 c). Towards data driven selection of a penalty function for data driven Neyman tests. Linear Algebra and its Appl. 417, 579--590.
Javitz, H.S. (1975). Generalized smooth tests of goodness of fit, independence and equality of distributions. Ph.D. thesis at University of California, Berkeley.
Janic, A. and Ledwina, T. (2008). Data-driven tests for a location-scale family revisited. J. Statist. Theory. Pract. Special issue on Modern Goodness of Fit Methods. accepted..
Kallenberg, W.C.M., Ledwina, T. (1997 a). Data driven smooth tests for composite hypotheses: Comparison of powers. J. Statist. Comput. Simul. 59, 101--121.
Kallenberg, W.C.M., Ledwina, T. (1997 b). Data driven smooth tests when the hypothesis is composite. J. Amer. Statist. Assoc. 92, 1094--1104.
Neyman, J. (1937). `Smooth test' for goodness of fit. Skand. Aktuarietidskr. 20, 149-199.
Neyman, J. (1959). Optimal asymptotic tests of composite statistical hypotheses. In Probability and Statistics, (ed. U. Grenander), Harald Cramer Volume, 212--234. Wiley, New York.
# Data Driven Smooth Test for Uniformity
#
# H0 is true
z = runif(80)
ddst.uniform.test(z, compute.p=TRUE)
# H0 is false
z = rbeta(80,4,2)
(t = ddst.uniform.test(z, compute.p=TRUE))
t$p.value
# Data Driven Smooth Test for Normality
#
# H0 is true
z = rnorm(80)
ddst.norm.test(z, compute.p=TRUE)
# H0 is false
z = rexp(80,4)
ddst.norm.test(z, B=5000, compute.p=TRUE)
# Data Driven Smooth Test for Extreme Value Distribution
#
# H0 is true
#library(evd)
#z = -qgumbel(runif(100),-1,1)
#ddst.extr.test (z, compute.p = TRUE)
# H0 is false
z = rexp(80,4)
ddst.extr.test (z, compute.p = TRUE)
# Data Driven Smooth Test for Exponentiality
#
# H0 is true
z = rexp(80,4)
ddst.exp.test (z, compute.p = TRUE)
# H0 is false
z = rchisq(80,4)
ddst.exp.test (z, compute.p = TRUE)
Run the code above in your browser using DataLab