#===============================================================================
# A Lotka-Volterra predator-prey model with predator and prey
# dispersing in 2 dimensions
#===============================================================================
######################
# Model definitions #
######################
lvmod2D <- function (time, state, pars, N, Da, dx)
{
NN <- N*N
Prey <- matrix(nr=N,nc=N,state[1:NN])
Pred <- matrix(nr=N,nc=N,state[(NN+1):(2*NN)])
with (as.list(pars),
{
# Biology
dPrey <- rGrow* Prey *(1- Prey/K) - rIng* Prey *Pred
dPred <- rIng* Prey *Pred*assEff -rMort* Pred
zero <- rep(0,N)
# 1. Fluxes in x-direction; zero fluxes near boundaries
FluxPrey <- -Da * rbind(zero,(Prey[2:N,]-Prey[1:(N-1),]),zero)/dx
FluxPred <- -Da * rbind(zero,(Pred[2:N,]-Pred[1:(N-1),]),zero)/dx
# Add flux gradient to rate of change
dPrey <- dPrey - (FluxPrey[2:(N+1),]-FluxPrey[1:N,])/dx
dPred <- dPred - (FluxPred[2:(N+1),]-FluxPred[1:N,])/dx
# 2. Fluxes in y-direction; zero fluxes near boundaries
FluxPrey <- -Da * cbind(zero,(Prey[,2:N]-Prey[,1:(N-1)]),zero)/dx
FluxPred <- -Da * cbind(zero,(Pred[,2:N]-Pred[,1:(N-1)]),zero)/dx
# Add flux gradient to rate of change
dPrey <- dPrey - (FluxPrey[,2:(N+1)]-FluxPrey[,1:N])/dx
dPred <- dPred - (FluxPred[,2:(N+1)]-FluxPred[,1:N])/dx
return (list(c(as.vector(dPrey),as.vector(dPred))))
})
}
######################
# Model applications #
######################
pars <- c(rIng =0.2, # /day, rate of ingestion
rGrow =1.0, # /day, growth rate of prey
rMort =0.2 , # /day, mortality rate of predator
assEff =0.5, # -, assimilation efficiency
K =5 ) # mmol/m3, carrying capacity
R <- 20 # total length of surface, m
N <- 50 # number of boxes in one direction
dx <- R/N # thickness of each layer
Da <- 0.05 # m2/d, dispersion coefficient
NN <- N*N # total number of boxes
# initial conditions
yini <- rep(0,2*N*N)
cc <- c((NN/2):(NN/2+1)+N/2,(NN/2):(NN/2+1)-N/2)
yini[cc] <- yini[NN+cc] <- 1
# solve model (5000 state variables...
times <- seq(0,50,by=1)
out<- ode.2D(y=yini,times=times,func=lvmod2D,parms=pars,
dimens=c(N,N),N=N,dx=dx,Da=Da,lrw=5000000)
# plot results
Col<- colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan",
"#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000"))
for (i in seq(1,length(times),by=1))
image(matrix(nr=N,nc=N,out[i,2:(NN+1)]),
col=Col(100),xlab="x",ylab="y",zlim=range(out[,2:(NN+1)]))
Run the code above in your browser using DataLab