# Example 1. Basic DEA model with desirable inputs/outputs.
# Replication of results in Charnes, Cooper and Rhodes (1981).
data("PFT1981")
# Selecting DMUs in Program Follow Through (PFT)
PFT <- PFT1981[1:49, ]
PFT <- make_deadata(PFT,
inputs = 2:6,
outputs = 7:9 )
eval_pft <- model_basic(PFT,
orientation = "io",
rts = "crs")
eff <- efficiencies(eval_pft)
s <- slacks(eval_pft)
lamb <- lambdas(eval_pft)
tar <- targets(eval_pft)
ref <- references(eval_pft)
returns <- rts(eval_pft)
# Example 2. Basic DEA model with undesirable outputs.
# Replication of results in Hua and Bian (2007).
data("Hua_Bian_2007")
# The third output is an undesirable output.
data_example <- make_deadata(Hua_Bian_2007,
ni = 2,
no = 3,
ud_outputs = 3)
# Translation parameter (vtrans_o) is set to 1500
result <- model_basic(data_example,
orientation = "oo",
rts = "vrs",
vtrans_o = 1500)
eff <- efficiencies(result)
1 / eff # results M5 in Table 6-5 (p.119)
# Example 3. Basic DEA model with non-discretionary (fixed) inputs.
# Replication of results in Ruggiero (2007).
data("Ruggiero2007")
# The second input is a non-discretionary input.
datadea <- make_deadata(Ruggiero2007,
ni = 2,
no = 1,
nd_inputs = 2)
result <- model_basic(datadea,
orientation = "io",
rts = "crs")
efficiencies(result)
Run the code above in your browser using DataLab