Learn R Programming

deaR (version 1.4.1)

model_supereff: Radial super-efficiency basic DEA model

Description

Solve Andersen and Petersen radial Super-efficiency DEA model.

Usage

model_supereff(datadea,
               dmu_eval = NULL,
               dmu_ref = NULL,
               supereff_modelname = c("basic"),
               ...)

Arguments

datadea

An object of class deadata.

dmu_eval

A numeric vector containing which DMUs have to be evaluated. If NULL (default), all DMUs are considered.

dmu_ref

A numeric vector containing which DMUs are the evaluation reference set. If NULL (default), all DMUs are considered.

supereff_modelname

A string containing the name of the radial model to apply super-efficiency.

...

orientation, rts and other model parameters.

Author

Vicente Coll-Serrano (vicente.coll@uv.es). Quantitative Methods for Measuring Culture (MC2). Applied Economics.

Vicente Bolós (vicente.bolos@uv.es). Department of Business Mathematics

Rafael Benítez (rafael.suarez@uv.es). Department of Business Mathematics

University of Valencia (Spain)

References

Andersen, P.; Petersen, N.C. (1993). "A procedure for ranking efficient units in data envelopment analysis", Management Science, 39, 1261-1264.

Tone, K. (2002). "A slacks-based measure of super-efficiency in data envelopment analysis", European Journal of Operational Research, 143, 32-41.

See Also

model_basic, model_sbmsupereff, model_addsupereff

Examples

Run this code
# Example 1.
# Replication of results in Tone (2002, p.38)
data("Power_plants")
data_example <- make_deadata(Power_plants, 
                             ni = 4, 
                             no = 2)
result <- model_supereff(data_example, 
                         orientation = "io", 
                         rts = "crs") 
eff <- efficiencies(result)
 
# Example 2. 
# Results of Super-efficiency with vrs returns to scale show infeasibility solutions 
# for DMUs D4 and D6 (these DMUs are not shown in deaR results).
data("Power_plants")
data_example2 <- make_deadata(Power_plants, 
                              ni = 4, 
                              no = 2) 
result2 <- model_supereff(data_example2, 
                          orientation = "io", 
                          rts = "vrs") 
eff2 <- efficiencies(result2)

Run the code above in your browser using DataLab