Learn R Programming

deal

Learning Bayesian Networks with Mixed Variables

The deal package offers R functions that estimate Bayesian networks with continuous and/or discrete variables can be learned and compared from data. It includes several methods for analysing data using Bayesian networks with variables of discrete and/or continuous types but restricted to conditionally Gaussian networks. Construction of priors for network parameters is supported and their parameters can be learned from data using conjugate updating. The network score is used as a metric to learn the structure of the network and forms the basis of a heuristic search strategy. deal has an interface to Hugin. The method is described in further detail in Boettcher and Dethlefsen (2003).

Installation

The released and tested version of deal is available at the Comprehensive R Archive Network). It is installed from within R by running

install.packages("deal")

To install the latest version of deal directly from GitHub, run

#install.packages("devtools")
devtools::install_github("ClausDethlefsen/deal")

Ensure that you have the package development prerequisites if you wish to install the package from the source. For previous versions of deal, visit the archive at CRAN.

References

  1. Boettcher, S., & Dethlefsen, C. (2003). deal: A Package for Learning Bayesian Networks. Journal of Statistical Software, 8(20), 1 - 40. doi:http://dx.doi.org/10.18637/jss.v008.i20

Copy Link

Version

Install

install.packages('deal')

Monthly Downloads

547

Version

1.2-42

License

GPL (>= 2)

Last Published

November 9th, 2022

Functions in deal (1.2-42)

deal-internal

deal internal functions
insert

Insert/remove an arrow in network
maketrylist

Creates the full trylist
makesimprob

Make a suggestion for simulation probabilities
jointprior

Calculates the joint prior distribution
learn

Estimation of parameters in the local probability distributions
genlatex

From a network family, generate LaTeX output
unique.networkfamily

Makes a network family unique.
Network tools

Tools for manipulating networks
perturb

Perturbs a network
network

Bayesian network data structure
node

Representation of nodes
networkfamily

Generates and learns all networks for a set of variables.
nwfsort

Sorts a list of networks
numbermixed

The number of possible networks
rats

Weightloss of rats
score

Network score
prob

Local probability distributions
rnetwork

Simulation of data sets with a given dependency structure
readnet

Reads/saves .net file
ksl

Health and social characteristics
autosearch

Greedy search
drawnetwork

Graphical interface for editing networks