localmaster: Local master
Description
Calculates the joint distribution of a node and its parents
from the joint prior.Usage
localmaster(family,nw,prior=jointprior(nw))
printmaster(nw,prior=jointprior(nw))
Arguments
family
Indices of node and parents of the node.
Details
Called by cond.node
.
For the discrete part of the
network, the master is the marginal distribution of the discrete nodes
in the family.
For the mixed part of the network, for each configuration $i$ of the
discrete variables in family
, the joint parameter priors are given
by jointprior
as
$$p(m_i|\Sigma_i) = N(\mu_i,\Sigma_i/\nu_i)$$
$$p(\Sigma_i) = IW(\rho_i,\Phi_i)$$
where IW
denotes the inverse Wishart distribution.
Then, the local master for configuration $i$ is deduced for the
family $A$ as
$$\Sigma_{A\cap\Gamma|i_{A\cap\Delta}} \sim IW(\rho_{i_{A\cap\Delta}},\tilde\Phi_{A\cap\Gamma|i_{A\cap\Delta}})$$
$$m_{A\cap\Gamma|i_{A\cap\Delta}}|\Sigma_{A\cap\Gamma|i_{A\cap\Delta}} \sim N(\bar\mu_{A\cap\Gamma|i_{A\cap\Delta}},
\Sigma_{A\cap\Gamma|i_{A\cap\Delta}}/\nu_{A\cap\Delta})$$
where $\Gamma$ is the set of continuous nodes and
$\Delta$ is the set of discrete nodes. Furthermore,
$$\rho_{i_{A\cap\Delta}} = \sum_{j:j_{A\cap\Delta}=i_{A\cap\Delta}} \rho_j$$
and likewise for $\nu_{i_{A\cap\Delta}}$
and $\Phi_{i_{A\cap\Delta}}$. Finally,
$$\bar\mu_{A\cap\Delta= (
\sum_{j:j_{A\cap\Delta}=i_{A\cap\Delta}}\mu_j\nu_j
)/\nu_{i_{A\cap\Delta}}
}$$
$$\tilde\Phi_{A\cap\Gamma|i_{A\cap\Delta}}= \Phi_{i_{A\cap\Delta}} +
\sum_{j:j_{A\cap\Delta}=i_{A\cap\Delta}}
\nu_j(\mu_j - \bar\mu_{i_{A\cap\Delta}})
(\mu_j - \bar\mu_{i_{A\cap\Delta}})^\top$$References
Further information about Deal can be found at:
http://www.math.auc.dk/novo/deal.