network is the list of
nodes. The nodes summarizes the local properties of the node given the
parents of the node.node (idx,parents,type,name=paste(idx),
levels=2,levelnames=paste(1:levels),position=c(0,0))
## S3 method for class 'node':
print (x,filename=NA,master=FALSE,condposterior=TRUE,condprior=TRUE,...)
## S3 method for class 'node':
plot (x,cexscale=10,notext=FALSE,scale=10,...)
prob.node (x,nw,df,equalcases=FALSE,vif=1.0,smalldf=NA)"discrete" or "continuous".type="discrete", this is the number of levels
for the discrete variable.type="discrete" this is a vector of
strings (as long as levels) with the names of the
levels.network and drawnetwork.TRUE) set the probability
equal to the
observed frequency. If FALSE, observed frequencies are used.timeslice.timeslice.FALSE, do not display text on plots.continuous or discrete.insert function.network.jointprior using the master prior procedure (see
localmaster).learnnode.learnnode.makesimprob and used by
simulation.A <- factor(rep(c("A1","A2"),50))
B <- factor(rep(rep(c("B1","B2"),25),2))
thisnet <- network( data.frame(A,B) )Run the code above in your browser using DataLab