Learn R Programming

deepNN (version 1.2)

NNgrad_test: NNgrad_test function

Description

A function to test gradient evaluation of a neural network by comparing it with central finite differencing.

Usage

NNgrad_test(net, loss = Qloss(), eps = 1e-05)

Value

the exact (computed via backpropagation) and approximate (via central finite differencing) gradients and also a plot of one against the other.

Arguments

net

an object of class network, see ?network

loss

a loss function to compute, see ?Qloss, ?multinomial

eps

small value used in the computation of the finite differencing. Default value is 0.00001

References

  1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)

  2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)

  3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

  4. http://neuralnetworksanddeeplearning.com/

See Also

network, train, backprop_evaluate, MLP_net, backpropagation_MLP, logistic, ReLU, smoothReLU, ident, softmax, Qloss, multinomial, NNgrad_test, weights2list, bias2list, biasInit, memInit, gradInit, addGrad, nnetpar, nbiaspar, addList, no_regularisation, L1_regularisation, L2_regularisation

Examples

Run this code

net <- network( dims = c(5,10,2),
                activ=list(ReLU(),softmax()))
NNgrad_test(net)

Run the code above in your browser using DataLab