Learn R Programming

deepNN (version 1.2)

ReLU: ReLU function

Description

A function to evaluate the ReLU activation function, the derivative and cost derivative to be used in defining a neural network.

Usage

ReLU()

Arguments

Value

a list of functions used to compute the activation function, the derivative and cost derivative.

References

  1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)

  2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)

  3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

  4. http://neuralnetworksanddeeplearning.com/

See Also

network, train, backprop_evaluate, MLP_net, backpropagation_MLP, logistic, smoothReLU, ident, softmax

Examples

Run this code

# Example in context

net <- network( dims = c(100,50,20,2),
                activ=list(ReLU(),ReLU(),softmax()))

Run the code above in your browser using DataLab