Learn R Programming

#Deepboost modeling.

Provides deepboost models training, evaluation, predicting and hyper parameter optimising using grid search and cross validation.

##Details

Based on Google's Deep Boosting algorithm by Cortes et al.

See this paper for details

Adapted from Google's C++ deepbbost implementation :

https://github.com/google/deepboost

Another version for the package that uses the original unmodified algorith exists in :

https://github.com/dmarcous/deepboost

##Installation

From CRAN :

install.packages("deepboost")

##Examples

Choosing parameters for a deepboost model :

best_params <- deepboost.gridSearch(formula, data)

Training a deepboost model :

boost <- deepboost(formula, data,
                    num_iter = best_params[2][[1]], 
                    beta = best_params[3][[1]], 
                    lambda = best_params[4][[1]], 
                    loss_type = best_params[5][[1]]
                    )

Print trained model evaluation statistics :

print(boost)

Classifying using a trained deepboost model :

labels <- predict(boost, newdata)

See Help / demo directory for advanced usage.

##Credits

R Package written and maintained by :

Daniel Marcous dmarcous@gmail.com

Yotam Sandbank yotamsandbank@gmail.com

Copy Link

Version

Install

install.packages('deepboost')

Monthly Downloads

73

Version

0.1.5

License

Apache License (== 2.0)

Issues

Pull Requests

Stars

Forks

Maintainer

Daniel Marcous

Last Published

December 29th, 2016

Functions in deepboost (0.1.5)

deepboost.gridSearch

Returns optimised parameter list for deepboost model on given data
deepboost.formula

Main function for deepboost model creation, using a formula
deepboost

Main function for deepboost model creation
deepboost.default

Main function for deepboost model creation
deepboost.evaluate

Evaluates and prints statistics for a deepboost model
australian

Australian
coli2000

coli2000
bupa

bupa
adult

Adult humans
banana

banana
deepboost.train

Trains a deepboost model
sonar

sonar
show,Deepboost-method

Print method for Deepboost model Evaluates a trained deepboost model object.
haberman

haberman
heart

heart
pima

pima
magic

magic
predict,Deepboost-method

Predict method for Deepboost model
deepboost.predict

Predicts instances responses based on a deepboost model
deepboost.print

Evaluates and prints statistics for a deepboost model on the train set