Learn R Programming

deeplearning (version 0.1.0)

print_weight: Prints out the weight of a deep neural network

Description

This function prints out the weight in a heat map, 3D surface, or histogram

Usage

print_weight(darch, num_of_layer, show_derivative = F, type = "heatmap")

Arguments

darch
DArch instance
num_of_layer
the number of the layer to print
show_derivative
T to show the weight value. F to show the percentage weight change in the finetuning stage. This helps spot the network saturation problem.
type
type of the graph. It supports "heatmap", "surface", and "histogram"

Examples

Run this code
# Example of Regression

input <- matrix(runif(1000), 500, 2)
input_valid <- matrix(runif(100), 50, 2)
target <- rowSums(input + input^2)
target_valid <- rowSums(input_valid + input_valid^2)
# create a new deep neural network for classificaiton
dnn_regression <- new_dnn(
 c(2, 50, 50, 20, 1),  # The layer structure of the deep neural network.
 # The first element is the number of input variables.
 # The last element is the number of output variables.
 hidden_layer_default = rectified_linear_unit_function,
 # for hidden layers, use rectified_linear_unit_function
 output_layer_default = linearUnitDerivative
 # for regression, use linearUnitDerivative function
)

# print the layer weights
# this function can print heatmap, histogram, or a surface
print_weight(dnn_regression, 1, type = "heatmap")

print_weight(dnn_regression, 2, type = "surface")

print_weight(dnn_regression, 3, type = "histogram")


Run the code above in your browser using DataLab