# Example of Regression
input <- matrix(runif(1000), 500, 2)
input_valid <- matrix(runif(100), 50, 2)
target <- rowSums(input + input^2)
target_valid <- rowSums(input_valid + input_valid^2)
# create a new deep neural network for classificaiton
dnn_regression <- new_dnn(
c(2, 50, 50, 20, 1), # The layer structure of the deep neural network.
# The first element is the number of input variables.
# The last element is the number of output variables.
hidden_layer_default = rectified_linear_unit_function,
# for hidden layers, use rectified_linear_unit_function
output_layer_default = linearUnitDerivative
# for regression, use linearUnitDerivative function
)
# print the layer weights
# this function can print heatmap, histogram, or a surface
print_weight(dnn_regression, 1, type = "heatmap")
print_weight(dnn_regression, 2, type = "surface")
print_weight(dnn_regression, 3, type = "histogram")
Run the code above in your browser using DataLab