Learn R Programming

degreenet (version 1.3-6)

aplnmle: Poisson Lognormal Modeling of Discrete Data

Description

Functions to Estimate the Poisson Lognormal Discrete Probability Distribution via maximum likelihood.

Usage

aplnmle(x, cutoff = 1, cutabove = 1000, guess = c(0.6,1.2),
    method = "BFGS", conc = FALSE, hellinger = FALSE, hessian=TRUE,logn=TRUE)

Value

theta

vector of MLE of the parameters.

asycov

asymptotic covariance matrix.

asycor

asymptotic correlation matrix.

se

vector of standard errors for the MLE.

conc

The value of the concentration index (if calculated).

Arguments

x

A vector of counts (one per observation).

cutoff

Calculate estimates conditional on exceeding this value.

cutabove

Calculate estimates conditional on not exceeding this value.

guess

Initial estimate at the MLE.

method

Method of optimization. See "optim" for details.

conc

Calculate the concentration index of the distribution?

hellinger

Minimize Hellinger distance of the parametric model from the data instead of maximizing the likelihood.

hessian

Calculate the hessian of the information matrix (for use with calculating the standard errors.

logn

Use logn parametrization, that is, mean and variance on the observation scale.

References

Jones, J. H. and Handcock, M. S. "An assessment of preferential attachment as a mechanism for human sexual network formation," Proceedings of the Royal Society, B, 2003, 270, 1123-1128.

See Also

ayulemle, awarmle, simpln

Examples

Run this code

# Simulate a Poisson Lognormal distribution over 100
# observations with lognormal mean of -1 and lognormal variance of 1
# This leads to a mean of 1

set.seed(1)
s4 <- simpln(n=100, v=c(-1,1))
table(s4)

#
# Calculate the MLE and an asymptotic confidence
# interval for the parameters
#

s4est <- aplnmle(s4)
s4est

# Calculate the MLE and an asymptotic confidence
# interval for rho under the Yule model
#

s4yuleest <- ayulemle(s4)
s4yuleest

# Calculate the MLE and an asymptotic confidence
# interval for rho under the Waring model
#

s4warest <- awarmle(s4)
s4warest

#
# Compare the AICC and BIC for the three models
#

llplnall(v=s4est$theta,x=s4)
llyuleall(v=s4yuleest$theta,x=s4)
llwarall(v=s4warest$theta,x=s4)

Run the code above in your browser using DataLab