Learn R Programming

degreenet (version 1.3-6)

bsyule: Calculate Bootstrap Estimates and Confidence Intervals for the Yule Distribution

Description

Uses the parametric bootstrap to estimate the bias and confidence interval of the MLE of the Yule Distribution.

Usage

bsyule(x, cutoff=1, m=200, np=1, alpha=0.95, v=NULL,
                   hellinger=FALSE, cutabove=1000)
bootstrapyule(x,cutoff=1,cutabove=1000,
                          m=200,alpha=0.95,guess=3.31,hellinger=FALSE,
                          mle.meth="ayulemle")

Value

dist

matrix of sample CDFs, one per row.

obsmle

The Yule MLE of the PDF exponent.

bsmles

Vector of bootstrap MLE.

quantiles

Quantiles of the bootstrap MLEs.

pvalue

p-value of the Anderson-Darling statistics relative to the bootstrap MLEs.

obsmands

Observed Anderson-Darling Statistic.

meanmles

Mean of the bootstrap MLEs.

Arguments

x

A vector of counts (one per observation).

cutoff

Calculate estimates conditional on exceeding this value.

m

Number of bootstrap samples to draw.

np

Number of parameters in the model (1 by default).

alpha

Type I error for the confidence interval.

v

Parameter value to use for the bootstrap distribution. By default it is the MLE of the data.

hellinger

Minimize Hellinger distance of the parametric model from the data instead of maximizing the likelihood.

cutabove

Calculate estimates conditional on not exceeding this value.

guess

Initial estimate at the MLE.

mle.meth

Method to use to compute the MLE.

References

Jones, J. H. and Handcock, M. S. "An assessment of preferential attachment as a mechanism for human sexual network formation," Proceedings of the Royal Society, B, 2003, 270, 1123-1128.

See Also

ayulemle, simyule, llyule

Examples

Run this code
# Now, simulate a Yule distribution over 100
# observations with rho=4.0

set.seed(1)
s4 <- simyule(n=100, rho=4)
table(s4)

#
# Calculate the MLE and an asymptotic confidence
# interval for rho
#

s4est <- ayulemle(s4)
s4est

#
# Use the bootstrap to compute a confidence interval rather than using the 
# asymptotic confidence interval for rho.
#

bsyule(s4, m=20)

Run the code above in your browser using DataLab