if (FALSE) {
set.seed(23235)
ss <- TRUE # sample(1:150, 10 )
hc1 <- hclust(dist(iris[ss, -5]), "com")
hc2 <- hclust(dist(iris[ss, -5]), "single")
tree1 <- as.dendrogram(hc1)
tree2 <- as.dendrogram(hc2)
# cutree(tree1)
Bk(hc1, hc2, k = 3)
Bk(hc1, hc2, k = 2:10)
Bk(hc1, hc2)
Bk(tree1, tree2, k = 3)
Bk(tree1, tree2, k = 2:5)
system.time(Bk(hc1, hc2, k = 2:5)) # 0.01
system.time(Bk(hc1, hc2)) # 1.28
system.time(Bk(tree1, tree2, k = 2:5)) # 0.24 # after fixes.
system.time(Bk(tree1, tree2, k = 2:10)) # 0.31 # after fixes.
system.time(Bk(tree1, tree2)) # 7.85
Bk(tree1, tree2, k = 99:101)
y <- Bk(hc1, hc2, k = 2:10)
plot(unlist(y) ~ c(2:10), type = "b", ylim = c(0, 1))
# can take a few seconds
y <- Bk(hc1, hc2)
plot(unlist(y) ~ as.numeric(names(y)),
main = "Bk plot", pch = 20,
xlab = "k", ylab = "FM Index",
type = "b", ylim = c(0, 1)
)
# we are still missing some hypothesis testing here.
# for this we'll have the Bk_plot function.
}
Run the code above in your browser using DataLab