dat <- iris[1:20, -5]
hca <- hclust(dist(dat))
hca2 <- hclust(dist(dat), method = "single")
dend <- as.dendrogram(hca)
dend2 <- as.dendrogram(hca2)
par(mfrow = c(1, 3))
dend %>%
highlight_branches_col() %>%
plot(main = "Coloring branches")
dend %>%
highlight_branches_lwd() %>%
plot(main = "Emphasizing line-width")
dend %>%
highlight_branches() %>%
plot(main = "Emphasizing color\n and line-width")
library(viridis)
par(mfrow = c(1, 3))
dend %>%
highlight_branches_col() %>%
plot(main = "Coloring branches \n(default is reversed viridis)")
dend %>%
highlight_branches_col(viridis(100)) %>%
plot(main = "It is better to use\nlighter colors in the leaves")
dend %>%
highlight_branches_col(rev(magma(1000))) %>%
plot(main = "The magma color pallatte\n is also good")
dl <- dendlist(dend, dend2)
tanglegram(dl,
sort = TRUE, common_subtrees_color_lines = FALSE,
highlight_distinct_edges = FALSE, highlight_branches_lwd = FALSE
)
tanglegram(dl)
tanglegram(dl, fast = TRUE)
dl <- dendlist(highlight_branches(dend), highlight_branches(dend2))
tanglegram(dl, sort = TRUE, common_subtrees_color_lines = FALSE, highlight_distinct_edges = FALSE)
dend %>%
set("highlight_branches_col") %>%
plot()
dl <- dendlist(dend, dend2) %>% set("highlight_branches_col")
tanglegram(dl, sort = TRUE, common_subtrees_color_lines = FALSE, highlight_distinct_edges = FALSE)
# This is also useful for heatmaps
# --------------------------
# library(dendextend)
x <- as.matrix(datasets::mtcars)
Rowv <- x %>%
dist() %>%
hclust() %>%
as.dendrogram() %>%
set("branches_k_color", k = 3) %>%
set("highlight_branches_lwd") %>%
ladderize()
# rotate_DendSer(ser_weight = dist(x))
Colv <- x %>%
t() %>%
dist() %>%
hclust() %>%
as.dendrogram() %>%
set("branches_k_color", k = 2) %>%
set("highlight_branches_lwd") %>%
ladderize()
# rotate_DendSer(ser_weight = dist(t(x)))
library(gplots)
heatmap.2(x, Rowv = Rowv, Colv = Colv)
Run the code above in your browser using DataLab