## Not run: 
# dend <- USArrests %>% dist %>% hclust(method = "ave") %>% as.dendrogram
# d1=color_branches(dend,5, col = c(3,1,1,4,1))
# plot(d1) # selective coloring of branches :)
# d2=color_branches(d1,5)
# plot(d2) 
# 
# d1=color_branches(dend,5, col = c(3,1,1,4,1),groupLabels=TRUE)
# plot(d1) # selective coloring of branches :)
# d2=color_branches(d1,5,groupLabels=TRUE)
# plot(d2) 
# 
# d5=color_branches(dend,5)
# plot(d5)
# d5g=color_branches(dend,5,groupLabels=TRUE)
# plot(d5g)
# d5gr=color_branches(dend,5,groupLabels=as.roman)
# plot(d5gr)
# 
# # messy - but interesting:
# dend_override=color_branches(dend,2,groupLabels=as.roman)
# dend_override=color_branches(dend_override,4,groupLabels=as.roman)
# dend_override=color_branches(dend_override,7,groupLabels=as.roman)
# plot(dend_override)
#  
# d5=color_branches(dend=dend[[1]],k=5)
#  
# 
# library(dendextend) 
# data(iris, envir = environment()) 
# d_iris <- dist(iris[,-5])
# hc_iris <- hclust(d_iris)
# dend_iris <- as.dendrogram(hc_iris)
# dend_iris=color_branches(dend_iris,k=3)
# 
# library(colorspace)
# labels_colors(dend_iris) <-
#  rainbow_hcl(3)[sort_levels_values(
#  as.numeric(iris[,5])[order.dendrogram(dend_iris)]
#  )]
# 
# plot(dend_iris, 
# main = "Clustered Iris dataset",
#  sub = "labels are colored based on the true cluster")
#  
# 
# 
# # cutree(dend_iris,k=3, order_clusters_as_data=FALSE,
#    #  try_cutree_hclust=FALSE)
# # cutree(dend_iris,k=3, order_clusters_as_data=FALSE)
# 
# library(colorspace)
# 
# data(iris, envir = environment()) 
# d_iris <- dist(iris[,-5])
# hc_iris <- hclust(d_iris)
# labels(hc_iris) # no labels, because "iris" has no row names
# dend_iris <- as.dendrogram(hc_iris)
# is.integer(labels(dend_iris)) # this could cause problems...
# 
# iris_species <- rev(levels(iris[,5]))
# dend_iris <- color_branches(dend_iris,k=3, groupLabels=iris_species)
# is.character(labels(dend_iris)) # labels are no longer "integer"
# 
# # have the labels match the real classification of the flowers:
# labels_colors(dend_iris) <-
#    rainbow_hcl(3)[sort_levels_values(
#       as.numeric(iris[,5])[order.dendrogram(dend_iris)]
#    )]
# 
# # We'll add the flower type
# labels(dend_iris) <- paste(as.character(iris[,5])[order.dendrogram(dend_iris)],
#                            "(",labels(dend_iris),")", 
#                            sep = "")
# 
# dend_iris <- hang.dendrogram(dend_iris,hang_height=0.1)
# 
# # reduce the size of the labels:
# dend_iris <- assign_values_to_leaves_nodePar(dend_iris, 0.5, "lab.cex")
# 
# par(mar = c(3,3,3,7))
# plot(dend_iris, 
#      main = "Clustered Iris dataset
#      (the labels give the true flower species)", 
#      horiz =  TRUE,  nodePar = list(cex = .007))
# legend("topleft", legend = iris_species, fill = rainbow_hcl(3))
# a= dend_iris[[1]]
# dend_iris1 <- color_branches(a,k = 3)
# plot(dend_iris1)
# 
# # str(dendrapply(d2, unclass))
# # unclass(d1)
# 
# c(1:5) %>% # take some data
#    dist %>% # calculate a distance matrix, 
#   # on it compute hierarchical clustering using the "average" method, 
#    hclust(method = "single") %>% 
#    as.dendrogram %>% color_branches(k=3) %>% plot # nice, returns the tree as is...
# 
# 
# # Example of the "clusters" parameter
# par(mfrow =c(1,2))
# dend <- c(1:5) %>% dist %>% hclust %>% as.dendrogram 
# dend %>% color_branches(k=3) %>% plot
# dend %>% color_branches(clusters=c(1,1,2,2,3)) %>% plot
# 
# 
# ## End(Not run)
Run the code above in your browser using DataLab