Learn R Programming

dimensio (version 0.9.0)

viz_wrap: Plot Envelopes

Description

Plot Envelopes

Usage

viz_hull(x, ...)

viz_confidence(x, ...)

viz_tolerance(x, ...)

# S4 method for MultivariateAnalysis viz_tolerance(x, ..., margin = 1, axes = c(1, 2), group = NULL, level = 0.95)

# S4 method for BootstrapCA viz_tolerance(x, ..., margin = 1, axes = c(1, 2), level = 0.95)

# S4 method for MultivariateAnalysis viz_confidence(x, ..., margin = 1, axes = c(1, 2), group = NULL, level = 0.95)

# S4 method for BootstrapCA viz_confidence(x, ..., margin = 1, axes = c(1, 2), level = 0.95)

# S4 method for MultivariateAnalysis viz_hull(x, ..., margin = 1, axes = c(1, 2), group = NULL)

# S4 method for BootstrapCA viz_hull(x, ..., margin = 1, axes = c(1, 2))

Value

viz_*()is called for its side-effects: it results in a graphic being displayed. Invisibly returns x.

Arguments

x

An object from which to wrap observations (a CA, MCA or PCA object).

...

Further graphical parameters to be passed to graphics::polygon().

margin

A length-one numeric vector giving the subscript which the data will be returned: 1 indicates individuals/rows (the default), 2 indicates variables/columns.

axes

A length-two numeric vector giving the dimensions for which to compute results.

group

A vector specifying the group an observation belongs to.

level

A numeric vector specifying the confidence/tolerance level.

Author

N. Frerebeau

See Also

Other plot methods: biplot(), plot(), screeplot(), viz_contributions(), viz_individuals(), viz_variables(), wrap

Examples

Run this code
## Load data
data("iris")

## Compute principal components analysis
X <- pca(iris, scale = TRUE, sup_quali = "Species")

## Plot with convex hulls
col <- c("#004488", "#DDAA33", "#BB5566")
viz_rows(X, extra_quali = iris$Species, color = col)
viz_hull(X, group = iris$Species, border = col)

## Plot with tolerance ellipses
col <- c("#004488", "#DDAA33", "#BB5566")
viz_rows(X, extra_quali = iris$Species, color = col)
viz_tolerance(X, group = iris$Species, border = col)

Run the code above in your browser using DataLab