Flash Sale | 50% off
Get 50% off unlimited learning

dirichletprocess (version 0.4.2)

StickBreaking: The Stick Breaking representation of the Dirichlet process.

Description

A Dirichlet process can be represented using a stick breaking construction G=i=1npiiδθi, where πk=βkk=1n1(1βk) are the stick breaking weights. The atoms δθi are drawn from G0 the base measure of the Dirichlet Process. The βkBeta(1,α). In theory n should be infinite, but we chose some value of N to truncate the series. For more details see reference.

Usage

StickBreaking(alpha, N)

piDirichlet(betas)

Value

Vector of stick breaking probabilities.

Arguments

alpha

Concentration parameter of the Dirichlet Process.

N

Truncation value.

betas

Draws from the Beta distribution.

Functions

  • piDirichlet(): Function for calculating stick lengths.

References

Ishwaran, H., & James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96(453), 161-173.