Minimum and Maximum-methods
Minimum(e1, e2, ...)
Maximum(e1, e2, ...)
# S4 method for AbscontDistribution,AbscontDistribution
Minimum(e1,e2, ...)
# S4 method for DiscreteDistribution,DiscreteDistribution
Minimum(e1,e2, ...)
# S4 method for AbscontDistribution,Dirac
Minimum(e1,e2,
withSimplify = getdistrOption("simplifyD"))
# S4 method for AcDcLcDistribution,AcDcLcDistribution
Minimum(e1,e2,
withSimplify = getdistrOption("simplifyD"))
# S4 method for AcDcLcDistribution,AcDcLcDistribution
Maximum(e1,e2,
withSimplify = getdistrOption("simplifyD"))
# S4 method for AbscontDistribution,numeric
Minimum(e1,e2, ...)
# S4 method for DiscreteDistribution,numeric
Minimum(e1,e2, ...)
# S4 method for AcDcLcDistribution,numeric
Minimum(e1,e2,
withSimplify = getdistrOption("simplifyD"))
# S4 method for AcDcLcDistribution,numeric
Maximum(e1,e2,
withSimplify = getdistrOption("simplifyD"))
the corresponding distribution of the minimum / maximum
distribution object
distribution object or numeric
further arguments (to be able to call various methods with the same arguments
logical; is result to be piped through a call to
simplifyD
?
signature(e1 = "AbscontDistribution", e2 = "AbscontDistribution")
:
returns the distribution of min(X1,X2)
, if X1
,X2
are independent
and distributed according to e1
and e2
respectively;
the result is again of class "AbscontDistribution"
signature(e1 = "DiscreteDistribution", e2 = "DiscreteDistribution")
:
returns the distribution of min(X1,X2)
, if X1
,X2
are independent
and distributed according to e1
and e2
respectively;
the result is again of class "DiscreteDistribution"
signature(e1 = "AbscontDistribution", e2 = "Dirac")
:
returns the distribution of min(X1,X2)
, if X1
,X2
are
distributed according to e1
and e2
respectively;
the result is of class "UnivarLebDecDistribution"
signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution")
:
returns the distribution of min(X1,X2)
, if X1
,X2
are
distributed according to e1
and e2
respectively;
the result is of class "UnivarLebDecDistribution"
signature(e1 = "AcDcLcDistribution", e2 = "numeric")
:
if e2
= \(n\), returns the distribution of min(X1,X2,...,Xn)
, if X1
,X2
,
..., Xn
are i.i.d. according to e1
;
the result is of class "UnivarLebDecDistribution"
signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution")
:
returns the distribution of max(X1,X2)
, if X1
,X2
are
distributed according to e1
and e2
respectively;
translates into -Minimum(-e1,-e2)
;
the result is of class "UnivarLebDecDistribution"
signature(e1 = "AcDcLcDistribution", e2 = "numeric")
:
if e2
= \(n\), returns the distribution of max(X1,X2,...,Xn)
, if X1
,X2
,
..., Xn
are i.i.d. according to e1
; translates into
-Minimum(-e1,e2)
; the result is of class "UnivarLebDecDistribution"
Huberize
, Truncate
## IGNORE_RDIFF_BEGIN
plot(Maximum(Unif(0,1), Minimum(Unif(0,1), Unif(0,1))))
plot(Minimum(Exp(4),4))
## IGNORE_RDIFF_END
# \donttest{
## a sometimes lengthy example...
plot(Minimum(Norm(),Pois()))# }
Run the code above in your browser using DataLab