Learn R Programming

distr6 (version 1.1.0)

Gamma: Gamma Distribution Class

Description

Mathematical and statistical functions for the Gamma distribution, which is commonly used as the prior in Bayesian modelling, the convolution of exponential distributions, and to model waiting times.

Value

Returns an R6 object inheriting from class SDistribution.

Constructor

Gamma$new(shape = 1, rate = 1, scale = NULL, mean = NULL, decorators = NULL, verbose = FALSE)

Constructor Arguments

Argument Type Details
shape numeric shape parameter.
rate numeric inverse scale parameter.
scale numeric scale parameter.
mean numeric alternate scale parameter.

decorators Decorator decorators to add functionality. See details.

Constructor Details

The Gamma distribution is parameterised with shape and either rate, scale or mean, all as positive numerics. These are related via, $$scale = 1/rate$$ $$mean = shape/rate$$ If mean is given then rate and scale are ignored. If scale is given then rate is ignored.

Public Variables

Variable Return
name Name of distribution.
short_name Id of distribution.
description Brief description of distribution.

Public Methods

Accessor Methods Link
decorators() decorators
traits() traits
valueSupport() valueSupport
variateForm() variateForm
type() type
properties() properties
support() support
symmetry() symmetry
sup() sup
inf() inf
dmax() dmax
dmin() dmin
skewnessType() skewnessType
kurtosisType() kurtosisType

Statistical Methods

Link
pdf(x1, ..., log = FALSE, simplify = TRUE) pdf
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) cdf
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) quantile.Distribution
rand(n, simplify = TRUE) rand
mean() mean.Distribution
variance() variance
stdev() stdev
prec() prec
cor() cor
skewness() skewness
kurtosis(excess = TRUE) kurtosis
entropy(base = 2) entropy
mgf(t) mgf
cf(t) cf
pgf(z) pgf
median() median.Distribution
iqr() iqr

Parameter Methods

Link
parameters(id) parameters
getParameterValue(id, error = "warn") getParameterValue
setParameterValue(..., lst = NULL, error = "warn") setParameterValue

Validation Methods

Link
liesInSupport(x, all = TRUE, bound = FALSE) liesInSupport
liesInType(x, all = TRUE, bound = FALSE) liesInType

Representation Methods

Link
strprint(n = 2) strprint
print(n = 2) print
summary(full = T) summary.Distribution
plot() Coming Soon.
qqplot() Coming Soon.

Details

The Gamma distribution parameterised with shape, \(\alpha\), and rate, \(\beta\), is defined by the pdf, $$f(x) = (\beta^\alpha)/\Gamma(\alpha)x^{\alpha-1}exp(-x\beta)$$ for \(\alpha, \beta > 0\).

The distribution is supported on the Positive Reals.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

See Also

listDistributions for all available distributions.

Examples

Run this code
# NOT RUN {
Gamma$new(shape = 1, rate = 2)
Gamma$new(shape = 1, scale = 4)
Gamma$new(shape = 1, mean = 0.5)

# Default is shape = 1, rate = 1
x = Gamma$new(verbose = TRUE)

# Update parameters
# When any parameter is updated, all others are too!
x$setParameterValue(scale = 2)
x$parameters()

# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)

# Statistics
x$mean()
x$variance()

summary(x)

# }

Run the code above in your browser using DataLab