Learn R Programming

distr6 (version 1.1.0)

Wald: Wald Distribution Class

Description

Mathematical and statistical functions for the Wald distribution, which is commonly used for modelling the first passage time for Brownian motion.

Value

Returns an R6 object inheriting from class SDistribution.

Constructor

Wald$new(mean = 1, shape = 1, decorators = NULL, verbose = FALSE)

Constructor Arguments

Argument Type Details
mean numeric location parameter.
shape numeric shape parameter.

decorators Decorator decorators to add functionality. See details.

Constructor Details

The Wald distribution is parameterised with mean and shape as positive numerics.

Public Variables

Variable Return
name Name of distribution.
short_name Id of distribution.
description Brief description of distribution.

Public Methods

Accessor Methods Link
decorators() decorators
traits() traits
valueSupport() valueSupport
variateForm() variateForm
type() type
properties() properties
support() support
symmetry() symmetry
sup() sup
inf() inf
dmax() dmax
dmin() dmin
skewnessType() skewnessType
kurtosisType() kurtosisType

Statistical Methods

Link
pdf(x1, ..., log = FALSE, simplify = TRUE) pdf
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) cdf
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) quantile.Distribution
rand(n, simplify = TRUE) rand
mean() mean.Distribution
variance() variance
stdev() stdev
prec() prec
cor() cor
skewness() skewness
kurtosis(excess = TRUE) kurtosis
entropy(base = 2) entropy
mgf(t) mgf
cf(t) cf
pgf(z) pgf
median() median.Distribution
iqr() iqr

Parameter Methods

Link
parameters(id) parameters
getParameterValue(id, error = "warn") getParameterValue
setParameterValue(..., lst = NULL, error = "warn") setParameterValue

Validation Methods

Link
liesInSupport(x, all = TRUE, bound = FALSE) liesInSupport
liesInType(x, all = TRUE, bound = FALSE) liesInType

Representation Methods

Link
strprint(n = 2) strprint
print(n = 2) print
summary(full = T) summary.Distribution
plot() Coming Soon.
qqplot() Coming Soon.

Details

The Wald distribution parameterised with mean, \(\mu\), and shape, \(\lambda\), is defined by the pdf, $$f(x) = (\lambda/(2x^3\pi))^{1/2} exp((-\lambda(x-\mu)^2)/(2\mu^2x))$$ for \(\lambda > 0\) and \(\mu > 0\).

The distribution is supported on the Positive Reals.

entropy is omitted as no closed form analytic expression could be found, decorate with CoreStatistics for numerical results. quantile is omitted as no closed form analytic expression could be found, decorate with FunctionImputation for a numerical imputation.

Also known as the Inverse Normal distribution. Sampling is performed as per Michael, Schucany, Haas (1976).

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

Michael, John R.; Schucany, William R.; Haas, Roy W. (May 1976). "Generating Random Variates Using Transformations with Multiple Roots". The American Statistician. 30 (2): 88<U+2013>90. doi:10.2307/2683801. JSTOR 2683801.

See Also

listDistributions for all available distributions. Normal for the Normal distribution. CoreStatistics for numerical results. FunctionImputation to numerically impute d/p/q/r.

Examples

Run this code
# NOT RUN {
x = Wald$new(mean = 2, shape = 5)

# Update parameters
x$setParameterValue(shape = 3)
x$parameters()

# d/p/q/r
x$pdf(5)
x$cdf(5)
x$rand(4)

# Statistics
x$mean()
x$variance()

summary(x)

# }

Run the code above in your browser using DataLab